Jump to content

Peracetic acid: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Piojo (talk | contribs)
m →‎Production: Note that the acid/peroxide reaction uses a catalyst.
Line 72: Line 72:
:O<sub>2</sub> + CH<sub>3</sub>CHO → CH<sub>3</sub>CO<sub>3</sub>H
:O<sub>2</sub> + CH<sub>3</sub>CHO → CH<sub>3</sub>CO<sub>3</sub>H


It forms upon treatment of [[acetic acid]] with [[hydrogen peroxide]]:<ref>{{cite journal|last1=Rangarajan |first1=B. |last2=Havey|first2= A.|last3= Grulke|first3= E. |last4=Culnan|first4= P. D. |year=1995|title=Kinetic parameters of a two-phase model for ''in situ'' epoxidation of soybean oil |journal=[[J. Am. Oil Chem. Soc.]]|volume=72|page=1161–1169}}</ref>
It forms upon treatment of [[acetic acid]] with [[hydrogen peroxide]] with a strong acid catalyst:<ref>{{cite journal|last1=Rangarajan |first1=B. |last2=Havey|first2= A.|last3= Grulke|first3= E. |last4=Culnan|first4= P. D. |year=1995|title=Kinetic parameters of a two-phase model for ''in situ'' epoxidation of soybean oil |journal=[[J. Am. Oil Chem. Soc.]]|volume=72|page=1161–1169}}</ref>
:H<sub>2</sub>O<sub>2</sub> + CH<sub>3</sub>CO<sub>2</sub>H {{eqm}} CH<sub>3</sub>CO<sub>3</sub>H + H<sub>2</sub>O
:H<sub>2</sub>O<sub>2</sub> + CH<sub>3</sub>CO<sub>2</sub>H {{eqm}} CH<sub>3</sub>CO<sub>3</sub>H + H<sub>2</sub>O
As an alternative, [[acetyl chloride]] and [[acetic anhydride]] can be used to generate a solution of the acid with lower water content.
As an alternative, [[acetyl chloride]] and [[acetic anhydride]] can be used to generate a solution of the acid with lower water content.

Revision as of 05:26, 21 October 2017

Peracetic acid
Peroxyacetic acid
Peroxyacetic acid
Peroxyacetic acid
Peroxyacetic acid
Names
Preferred IUPAC name
Ethaneperoxoic acid[1]
Other names
Peroxyacetic acid
Acetic peroxide
Acetyl hydroperoxide
Proxitane
Identifiers
3D model (JSmol)
Abbreviations PAA
ChEMBL
ChemSpider
ECHA InfoCard 100.001.079 Edit this at Wikidata
KEGG
RTECS number
  • SD8750000
UNII
  • InChI=1S/C2H4O3/c1-2(3)5-4/h4H,1H3 checkY
    Key: KFSLWBXXFJQRDL-UHFFFAOYSA-N checkY
  • InChI=1/C2H4O3/c1-2(3)5-4/h4H,1H3
    Key: KFSLWBXXFJQRDL-UHFFFAOYAD
  • CC(=O)OO
Properties
C2H4O3
Molar mass 76.05 g/mol
Appearance Colorless liquid
Density 1.0375 g/mL
Melting point 0 °C (32 °F; 273 K)[2]
Boiling point 105 °C (221 °F; 378 K) 25 C @ (1.6 kPa)[2]
Acidity (pKa) 8.2
1.3974 (589 nm, 20 °C)[2]
Viscosity 3.280 cP
Pharmacology
QG51AD03 (WHO)
Hazards
NFPA 704 (fire diamond)
Flash point 40.5 °C (104.9 °F; 313.6 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Peracetic acid (also known as peroxyacetic acid, or PAA), is an organic compound with the formula CH3CO3H. This organic peroxide is a colorless liquid with a characteristic acrid odor reminiscent of acetic acid. It can be highly corrosive.

Peracetic acid is a weaker acid than the parent acetic acid, with a pKa of 8.2.[2]

Production

Peracetic acid is produced industrially by the autoxidation of acetaldehyde:[2]

O2 + CH3CHO → CH3CO3H

It forms upon treatment of acetic acid with hydrogen peroxide with a strong acid catalyst:[3]

H2O2 + CH3CO2H ⇌ CH3CO3H + H2O

As an alternative, acetyl chloride and acetic anhydride can be used to generate a solution of the acid with lower water content.

Peracetic acid is generated in situ by some laundry detergents. This route involves the reaction of tetraacetylethylenediamine (TAED) in the presence of an alkaline hydrogen peroxide solution The peracetic acid is a more effective bleaching agent than hydrogen peroxide itself.[4][5] PAA is also formed naturally in the environment through a series of photochemical reactions involving formaldehyde and photo-oxidant radicals.[6]

Peracetic acid is always sold in solution as a mixture with acetic acid and hydrogen peroxide to maintain its stability. The concentration of the acid as the active ingredient can vary.

Uses

The United States Environmental Protection Agency first registered peracetic acid as an antimicrobial in 1985 for indoor use on hard surfaces. Use sites include agricultural premises, food establishments, medical facilities, and home bathrooms. Peracetic acid is also registered for use in dairy/cheese processing plants, on food processing equipment, and in pasteurizers in breweries, wineries, and beverage plants.[7] It is also applied for the disinfection of medical supplies, to prevent biofilm formation in pulp industries, and as a water purifier and disinfectant. Peracetic acid can be used as a cooling tower water disinfectant, where it prevents bio film formation and effectively controls Legionella bacteria. A trade name for peracetic acid as an antimicrobial is Nu-Cidex.[8]

Epoxidation

Although less active than more acidic peracids (e.g., m-CPBA), peracetic acid in various forms is used for the epoxidation of various alkenes. Useful application are for unsaturated fats, synthetic and natural rubbers, and some natural products such as pinene. A variety of factors affect the amount of free acid or sulfuric acid (used to prepare the peracid in the first place).[9]

Safety

Peracetic acid is a strong oxidizing agent (E0 = 1.762 V vs Ag/AgCl)[10] and a primary irritant. Exposure to peracetic acid can cause irritation to the skin, eyes and respiratory system and higher or long-term exposure can cause permanent lung damage. In addition, there have been cases of occupational asthma caused by peracetic acid.[11] The ACGIH has published (spring 2014) a STEL TLV for peracetic acid of 0.4 ppm, calculated as a 15-minute time weighted average. Currently there is no OSHA Permissible Exposure Limit (PEL) for peracetic acid. In 2010, the US EPA published Acute Exposure Guidelines (AEGL) for peracetic acid.

eight-hour TWA AEGL Definition mg/m3 ppm
1 The concentration at which the general population will experience transient and reversible problems, such as notable discomfort, irritation, or certain asymptomatic non-sensory effects. 0.52 0.17
2 The concentration that results in irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. 1.6 0.52
3 The concentration that results in life-threatening health effects or death 4.1 1.3

See also

References

  1. ^ Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 749. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
  2. ^ a b c d e Klenk, Herbert; Götz, Peter H.; Siegmeier, Rainer; Mayr, Wilfried. "Peroxy Compounds, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a19_199. ISBN 978-3527306732.
  3. ^ Rangarajan, B.; Havey, A.; Grulke, E.; Culnan, P. D. (1995). "Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil". J. Am. Oil Chem. Soc. 72: 1161–1169.
  4. ^ Smulders, Eduard; Von Rybinski, Wolfgang; Sung, Eric; Rähse, Wilfried; Steber, Josef; Wiebel, Frederike; Nordskog, Anette (2007). "Laundry Detergents". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_315.pub2. ISBN 978-3527306732.
  5. ^ "Peracetic acid" (PDF). Agriculture Marketing Service. United States Department of Agriculture. Retrieved 2006-11-11.
  6. ^ "Hazardous Substances Data Bank". ToxNet. U.S. National Library of Medicine. Retrieved 2006-11-11.
  7. ^ "Hydrogen Peroxide and Peroxyacetic Acid". U.S. Environmental Protection Agency. Retrieved 2006-11-11.
  8. ^ Lynam, P. A.; Babb, J. R.; Fraise, A. P. (1995). "Comparison of the mycobactericidal activity of 2% alkaline glutaraldehyde and 'Nu-Cidex' (0.35% peracetic acid)". J. Hosp. Infect. 30 (3): 237–240. PMID 8522783.
  9. ^ Sienel, Guenter; Rieth, Robert; Rowbottom, Kenneth T. (2000). "Epoxides". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_531. ISBN 978-3527306732.
  10. ^ Awad, Mohamed Ismail; Denggerile, Ao; Ohsaka, Takeo (2004). "Electroreduction of Peroxyacetic Acid at Gold Electrode in Aqueous Media". J. Electrochem. Soc. 151: E358. doi:10.1149/1.1812733.
  11. ^ Marquand, E. C.; et al. (2007). "Asthma Caused by Peracetic Acid-Hydrogen Peroxide Mixture". J. Occup. Health. 49 (2): 155–158.