Binary operation, takes two matrices and returns a scalar
In mathematics , the Frobenius inner product is a binary operation that takes two matrices and returns a scalar . It is often denoted
⟨
A
,
B
⟩
F
{\displaystyle \langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }}
. The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product. The two matrices must have the same dimension - same number of rows and columns, but are not restricted to be square matrices .
Definition
Given two complex number -valued n ×m matrices A and B , written explicitly as
A
=
(
A
11
A
12
⋯
A
1
m
A
21
A
22
⋯
A
2
m
⋮
⋮
⋱
⋮
A
n
1
A
n
2
⋯
A
n
m
)
,
B
=
(
B
11
B
12
⋯
B
1
m
B
21
B
22
⋯
B
2
m
⋮
⋮
⋱
⋮
B
n
1
B
n
2
⋯
B
n
m
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}A_{11}&A_{12}&\cdots &A_{1m}\\A_{21}&A_{22}&\cdots &A_{2m}\\\vdots &\vdots &\ddots &\vdots \\A_{n1}&A_{n2}&\cdots &A_{nm}\\\end{pmatrix}}\,,\quad \mathbf {B} ={\begin{pmatrix}B_{11}&B_{12}&\cdots &B_{1m}\\B_{21}&B_{22}&\cdots &B_{2m}\\\vdots &\vdots &\ddots &\vdots \\B_{n1}&B_{n2}&\cdots &B_{nm}\\\end{pmatrix}}}
the Frobenius inner product is defined as,
⟨
A
,
B
⟩
F
=
∑
i
,
j
A
i
j
¯
B
i
j
=
T
r
(
A
T
¯
B
)
≡
T
r
(
A
†
B
)
{\displaystyle \langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }=\sum _{i,j}{\overline {A_{ij}}}B_{ij}\,=\mathrm {Tr} \left({\overline {\mathbf {A} ^{T}}}\mathbf {B} \right)\equiv \mathrm {Tr} \left(\mathbf {A} ^{\!\dagger }\mathbf {B} \right)}
where the overline denotes the complex conjugate , and
†
{\displaystyle \dagger }
denotes Hermitian conjugate .[ 1] Explicitly this sum is
⟨
A
,
B
⟩
F
=
A
¯
11
B
11
+
A
¯
12
B
12
+
⋯
+
A
¯
1
m
B
1
m
+
A
¯
21
B
21
+
A
¯
22
B
22
+
⋯
+
A
¯
2
m
B
2
m
⋮
+
A
¯
n
1
B
n
1
+
A
¯
n
2
B
n
2
+
⋯
+
A
¯
n
m
B
n
m
{\displaystyle {\begin{aligned}\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }=&{\overline {A}}_{11}B_{11}+{\overline {A}}_{12}B_{12}+\cdots +{\overline {A}}_{1m}B_{1m}\\&+{\overline {A}}_{21}B_{21}+{\overline {A}}_{22}B_{22}+\cdots +{\overline {A}}_{2m}B_{2m}\\&\vdots \\&+{\overline {A}}_{n1}B_{n1}+{\overline {A}}_{n2}B_{n2}+\cdots +{\overline {A}}_{nm}B_{nm}\\\end{aligned}}}
The calculation is very similar to the dot product , which in turn is an example of an inner product.[citation needed ]
Relation to other products
If A and B are each real -valued matrices, the Frobenius inner product is the sum of the entries of the Hadamard product . If the matrices are vectorised (i.e., converted into column vectors, denoted by "
v
e
c
(
⋅
)
{\displaystyle \mathrm {vec} (\cdot )}
"), then
v
e
c
(
A
)
=
(
A
11
A
12
⋮
A
21
A
22
⋮
A
n
m
)
,
v
e
c
(
B
)
=
(
B
11
B
12
⋮
B
21
B
22
⋮
B
n
m
)
,
{\displaystyle \mathrm {vec} (\mathbf {A} )={\begin{pmatrix}A_{11}\\A_{12}\\\vdots \\A_{21}\\A_{22}\\\vdots \\A_{nm}\end{pmatrix}},\quad \mathrm {vec} (\mathbf {B} )={\begin{pmatrix}B_{11}\\B_{12}\\\vdots \\B_{21}\\B_{22}\\\vdots \\B_{nm}\end{pmatrix}}\,,}
v
e
c
(
A
)
¯
T
v
e
c
(
B
)
=
(
A
¯
11
A
¯
12
⋯
A
¯
21
A
¯
22
⋯
A
¯
n
m
)
(
B
11
B
12
⋮
B
21
B
22
⋮
B
n
m
)
{\displaystyle \quad {\overline {\mathrm {vec} (\mathbf {A} )}}^{T}\mathrm {vec} (\mathbf {B} )={\begin{pmatrix}{\overline {A}}_{11}&{\overline {A}}_{12}&\cdots &{\overline {A}}_{21}&{\overline {A}}_{22}&\cdots &{\overline {A}}_{nm}\end{pmatrix}}{\begin{pmatrix}B_{11}\\B_{12}\\\vdots \\B_{21}\\B_{22}\\\vdots \\B_{nm}\end{pmatrix}}}
Therefore
⟨
A
,
B
⟩
F
=
v
e
c
(
A
)
¯
T
v
e
c
(
B
)
.
{\displaystyle \langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }={\overline {\mathrm {vec} (\mathbf {A} )}}^{T}\mathrm {vec} (\mathbf {B} )\,.}
[citation needed ]
Properties
Like any inner product, it is a sesquilinear form , for four complex-valued matrices A , B , C , D , and two complex numbers a and b :
⟨
a
A
,
b
B
⟩
F
=
a
¯
b
⟨
A
,
B
⟩
F
{\displaystyle \langle a\mathbf {A} ,b\mathbf {B} \rangle _{\mathrm {F} }={\overline {a}}b\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }}
⟨
A
+
C
,
B
+
D
⟩
F
=
⟨
A
,
B
⟩
F
+
⟨
A
,
D
⟩
F
+
⟨
C
,
B
⟩
F
+
⟨
C
,
D
⟩
F
{\displaystyle \langle \mathbf {A} +\mathbf {C} ,\mathbf {B} +\mathbf {D} \rangle _{\mathrm {F} }=\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }+\langle \mathbf {A} ,\mathbf {D} \rangle _{\mathrm {F} }+\langle \mathbf {C} ,\mathbf {B} \rangle _{\mathrm {F} }+\langle \mathbf {C} ,\mathbf {D} \rangle _{\mathrm {F} }}
Also, exchanging the matrices amounts to complex conjugation:
⟨
B
,
A
⟩
F
=
⟨
A
,
B
⟩
F
¯
{\displaystyle \langle \mathbf {B} ,\mathbf {A} \rangle _{\mathrm {F} }={\overline {\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }}}}
For the same matrix,
⟨
A
,
A
⟩
F
≥
0
{\displaystyle \langle \mathbf {A} ,\mathbf {A} \rangle _{\mathrm {F} }\geq 0}
,[citation needed ]
and,
⟨
A
,
A
⟩
F
=
0
⟺
A
=
0
{\displaystyle \langle \mathbf {A} ,\mathbf {A} \rangle _{\mathrm {F} }=0\Longleftrightarrow \mathbf {A} =\mathbf {0} }
.
Frobenius norm
The inner product induces the Frobenius norm
‖
A
‖
F
=
⟨
A
,
A
⟩
F
.
{\displaystyle \|\mathbf {A} \|_{\mathrm {F} }={\sqrt {\langle \mathbf {A} ,\mathbf {A} \rangle _{\mathrm {F} }}}\,.}
[ 1]
Examples
Real-valued matrices
For two real-valued matrices, if
A
=
(
2
0
6
1
−
1
2
)
,
B
=
(
8
−
3
2
4
1
−
5
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}2&0&6\\1&-1&2\end{pmatrix}}\,,\quad \mathbf {B} ={\begin{pmatrix}8&-3&2\\4&1&-5\end{pmatrix}}}
then
⟨
A
,
B
⟩
F
=
2
⋅
8
+
0
⋅
(
−
3
)
+
6
⋅
2
+
1
⋅
4
+
(
−
1
)
⋅
1
+
2
⋅
(
−
5
)
=
21
{\displaystyle {\begin{aligned}\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }&=2\cdot 8+0\cdot (-3)+6\cdot 2+1\cdot 4+(-1)\cdot 1+2\cdot (-5)\\&=21\end{aligned}}}
Complex-valued matrices
For two complex-valued matrices, if
A
=
(
1
+
i
−
2
i
3
−
5
)
,
B
=
(
−
2
3
i
4
−
3
i
6
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}1+i&-2i\\3&-5\end{pmatrix}}\,,\quad \mathbf {B} ={\begin{pmatrix}-2&3i\\4-3i&6\end{pmatrix}}}
then
⟨
A
,
B
⟩
F
=
(
1
−
i
)
⋅
(
−
2
)
+
2
i
⋅
3
i
+
3
⋅
(
4
−
3
i
)
+
(
−
5
)
⋅
6
=
−
26
−
7
i
{\displaystyle {\begin{aligned}\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }&=(1-i)\cdot (-2)+2i\cdot 3i+3\cdot (4-3i)+(-5)\cdot 6\\&=-26-7i\end{aligned}}}
while
⟨
B
,
A
⟩
F
=
(
−
2
)
⋅
(
1
+
i
)
+
(
−
3
i
)
⋅
(
−
2
i
)
+
(
4
+
3
i
)
⋅
3
+
6
⋅
(
−
5
)
=
−
26
+
7
i
{\displaystyle {\begin{aligned}\langle \mathbf {B} ,\mathbf {A} \rangle _{\mathrm {F} }&=(-2)\cdot (1+i)+(-3i)\cdot (-2i)+(4+3i)\cdot 3+6\cdot (-5)\\&=-26+7i\end{aligned}}}
The Frobenius inner products of A with itself, and B with itself, are respectively
⟨
A
,
A
⟩
F
=
2
+
4
+
9
+
25
=
40
{\displaystyle \langle \mathbf {A} ,\mathbf {A} \rangle _{\mathrm {F} }=2+4+9+25=40}
⟨
B
,
B
⟩
F
=
4
+
9
+
25
+
36
=
74
{\displaystyle \qquad \langle \mathbf {B} ,\mathbf {B} \rangle _{\mathrm {F} }=4+9+25+36=74}
See also
References
Areas Basic concepts Algebraic structures Linear and multilinear algebra Algebraic constructions Topic lists Glossaries