Jump to content

Talk:Electric dipole moment

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 82.32.49.157 (talk) at 06:19, 26 April 2011 (→‎Examples). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Please add {{WikiProject banner shell}} to this page and add the quality rating to that template instead of this project banner. See WP:PIQA for details.
WikiProject iconPhysics B‑class Mid‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
BThis article has been rated as B-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-importance on the project's importance scale.
Archived talk from Talk:Electrical dipole moment

I clarified the meaning of r in the generic discrete case as before it was not distinguished from the r of the simple case and added a link to Vector (spatial for further reading (this is an introductory enough article to warrant a link to another introductory topic?). Still, the generic definition does not deal with of all the same charge.....

Also, what is going on with the definition of a generic distribution? We have q- --> q+ for r(vector), but the generalization does not specify what happens if we have multiple q+ in our set of charges. Is this r(vector) in the general case taken to be a vector from some origin?

Could somebody explain the significance. I don't understand the maths here either as electrial fields obey the inverse square law so I would expect the moment to decrease wrt this principle.Rjstott 05:06, 7 Apr 2004 (UTC)

A dipole has both a positive and negative charge seperated by distance d. Thus by superposition the Electric Field of the dipole is the field of the negative charge + the field of the positive charge. If you work out the math it becomes an inverse r^3 relationship between E-field and distance. A dipole is 2 opposing charges so the combined effect is weaker than 1 normal charge.


How comes that the dipole moment of methyl chloride is 1.90 and the one of methyl fluoride is 1.85 (so smaller) despite the fact that F has a higher electronegativity? -- In response to your question, my gut answer is that you're not taking into consideration the relative sizes of the Cl and F atoms. F has an incredibly small atomic radius because of its electronegativity, consequently the bond length is much smaller, which means its in the dipole calculation is much smaller. So even though F tugs on all the electrons in CH3F harder than Cl in CH3Cl, this effect in the dipole calculation is offset by how close the F is to the central C. --24.207.160.213 22:26, 4 July 2007 (UTC)[reply]

This is the page a search for dipole moment should re-direrct to, not the generic dipoles page.

Direction of moment

The fact that the dipole moment vector is directed from the negative charge to the positive charge is seen to be related to the fact that the plain position vector of a point is directed from the origin to that point.

I don't understand this argument. --Abdull 10:10, 23 October 2007 (UTC)[reply]

I have thought for a while that the electromagnetism template is too long. I feel it gives a better overview of the subject if all of the main topics can be seen together. I created a new template and gave an explanation on the old template talk page, however I don't think many people are watching that page.

I have modified this article to demonstrate the new template and I would appreciate people's thoughts on it: constructive criticism, arguments for or against the change, suggestions for different layouts, etc.

To see an example of a similar template style, check out Template:Thermodynamic_equations. This example expands the sublist associated with the main topic article currently being viewed, then has a separate template for each main topic once you are viewing articles within that topic. My personal preference (at least for electromagnetism) would be to remain with just one template and expand the main topic sublist for all articles associated with that topic.--DJIndica 16:38, 6 November 2007 (UTC)[reply]

Electric vs electrical

Much more commonly referred to as "electric dipole moment". This comes both from my experience and from a google search showing that "electric dipole moment" results outnumber those for "electrical dipole moment" by a factor of 30.--DJIndica 17:10, 6 November 2007 (UTC)[reply]

Electric vs electrical

Much more commonly referred to as "electric dipole moment". This comes both from my experience and from a google search showing that "electric dipole moment" results outnumber those for "electrical dipole moment" by a factor of 30.--DJIndica 17:05, 6 November 2007 (UTC)[reply]

Examples

It would be wonderful if somebody place here any examples of dipole moments. For instance, the one of water. Esmu Igors (talk) 17:43, 7 November 2010 (UTC)[reply]

Lack of Generality

I have not read the article that carefully, but I can see no mention of the permittivity (e) of the medium in which the charges of an electric dipole are immersed, nor a statement that the discussion reletes exclusively to vacuum. As far as I can see, all of the maths expressions include e0 where e*e0 should be written.