Bromide
Names | |
---|---|
Systematic IUPAC name
Bromide[1] | |
Identifiers | |
3D model (JSmol)
|
|
3587179 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
14908 | |
KEGG | |
PubChem CID
|
|
| |
| |
Properties | |
Br- | |
Molar mass | 79.904 g mol-1 |
Pharmacology | |
Pharmacokinetics: | |
12 d | |
Thermochemistry | |
Std molar
entropy (S⦵298) |
82 J·mol−1·K−1[2] |
Std enthalpy of
formation (ΔfH⦵298) |
−121 kJ·mol−1[2] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
A bromide is a chemical compound containing a bromide ion, that is a bromine atom with an effective charge of −1. The class name can include ionic compounds such as caesium bromide or covalent compounds such as sulfur dibromide.
Natural occurrence
Bromide is present in typical seawater (35 PSU) with a concentration of around 65 mg/L, which is around 0.2% of all dissolved salts. Seafoods and deep sea plants generally have high levels of bromide, while foods derived from land have variable amounts.
Chemistry
One can test for a bromide ion by adding dilute nitric acid (HNO3), then silver nitrate (AgNO3). A creamy precipitate of silver bromide forms.
Medical uses
Bromide compounds, especially potassium bromide, were frequently used as sedatives in the 19th and early 20th century. Their use in over-the-counter sedatives and headache remedies (such as Bromo-Seltzer) in the United States extended to 1975, when these bromides were withdrawn as ingredients, due to chronic toxicity.[3]
This use gave the word "bromide" its colloquial connotation of a boring cliché, a bit of conventional wisdom overused as a calming phrase, or verbal sedative.
The bromide ion is antiepileptic, and bromide salts are still used as such, particularly in veterinary medicine. Bromide ion is excreted by the kidneys. The half-life of bromide in the human body (12 days) is long compared with many pharmaceuticals, making dosing difficult to adjust (a new dose may require several months to reach equilibrium). Bromide ion concentrations in the cerebrospinal fluid are about 30% of those in blood, and are strongly influenced by the body's chloride intake and metabolism.[4]
Since bromide is still used in veterinary medicine (particularly to treat seizures in dogs) in the United States, veterinary diagnostic labs can routinely measure blood bromide levels. However, this is not a conventional test in human medicine in the U.S., since there are no FDA-approved uses for bromide, and it is no longer available in over-the-counter sedatives. Therapeutic bromide levels are measured in European countries like Germany, where bromide is still used therapeutically in human epilepsy.
Chronic toxicity from bromide can result in bromism, a syndrome with multiple neurological symptoms. Bromide toxicity can also cause a type of skin eruption. See potassium bromide.
Lithium bromide was used as a sedative beginning in the early 1900s, but it fell into disfavor in the 1940s when some heart patients died after using it as a salt substitute.[5] Like lithium carbonate and lithium chloride it was used as treatment for bipolar disorder.
In biology
Bromide is needed by eosinophils (white blood cells of the granulocyte class, specialized for dealing with multi-cellular parasites), which use it to generate antiparasitic brominating compounds by the action of eosinophil peroxidase, a haloperoxidase enzyme which is able to use chloride, but preferentially uses bromide when available.[6] Despite this use by the body, bromide is not known to be strictly necessary for life, as its functions may generally be replaced (though in some cases not as well) by chloride.
Bromide salts are also sometimes used in hot tubs and spas as mild germicidal agents, using the action of an added oxidizing agent to generate in situ hypobromite, in a similar fashion to the peroxidase in eosinophils.
The average concentration of bromide in human blood is 5.3±1.4 mg/L and varies with age and gender.[7] Much higher levels may indicate exposure to brominated chemicals (e.g. methyl bromide). However, bromide occurs in relatively high concentration in seawater and many types of seafood, and bromide concentrations in the blood are heavily influenced by seafood contributions to the diet.
References
- ^ "Bromide - PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information.
- ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. ISBN 061894690X.
- ^ Adams, Samuel Hopkins (1905). "The Great American fraud"Template:Inconsistent citations
{{cite web}}
: CS1 maint: postscript (link). - ^ Goodman and Gilman, The Biological Basis of Therapeutics, Fourth Edition, Chapter 10 (Hypnotics and Sedatives), p. 121, The MacMillan Co., London, 1970.
- ^ Bipolar disorder
- ^ Mayeno, AN; Curran, AJ; Roberts, RL; Foote, CS (1989). "Eosinophils preferentially use bromide to generate halogenating agents". The Journal of biological chemistry. 264 (10): 5660–8. PMID 2538427.
- ^ Olszowy, HA; Rossiter, J; Hegarty, J; Geoghegan, P (1998). "Background levels of bromide in human blood". Journal of analytical toxicology. 22 (3): 225–30. PMID 9602940.