Jump to content

Talk:Stokes flow

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Bungeh (talk | contribs) at 07:20, 20 May 2013 (→‎Are the viscous forces really large in comparison with the advective inertial forces?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconPhysics: Fluid Dynamics Start‑class Mid‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-importance on the project's importance scale.
This article is supported by Fluid Dynamics Taskforce.

Are the viscous forces really large in comparison with the advective inertial forces?

As the headline reads, are the viscous forces really large in comparison with the advective inertial forces? Have this actually been measured or showed somehow? Where does this claim come from? That the Reynolds number is very low is a completely different thing and is much easier to show. Has some Wikipedian made the conclusion that the two are equivalent? I'm not so sure they are, even though they might be. I have put a {{fact}} tag after the statement "Stokes flow ... is a type of fluid flow where advective inertial forces are small compared with viscous forces" until someone can find a source for the claim or show the equivalence I just mentioned. —Kri (talk) 19:34, 14 August 2012 (UTC)[reply]

I think you will find the equivalence follows trivially from the definition of Reynolds number as the ratio of inertial forces/viscous forces. Obviously when Re << 1, the numerator (inertial) must be very small relative to the denominator (viscous). Bungeh (talk) 07:20, 20 May 2013 (UTC)[reply]

Are creeping flow and creeping motion the same as Stokes flow?

I am confused about "creeping flow" and "creeping motion". Both redirect here, and are mentioned as synonyms to Stokes flow. I actually added "creeping motion" as a synonym, because the article didn't mention "creeping motion" at all.

But I am unsure if that is correct. [1] quotes McGraw-Hill Concise Encyclopedia of Physics. © 2002 by The McGraw-Hill Companies, Inc. for saying that "In creeping flow the Reynolds number is very small (less than 1) such that the inertia effects can be ignored in comparison to the viscous resistance. Creeping flow at zero Reynolds number is called Stokes flow." That means that "Stokes flow" (Re << 1, or maybe even Re = 0) is just a special case of "creeping flow" (Re < 1). Is that true?

And what about "creeping motion"? Is that the same as "Stokes flow", or "creeping flow", or something different from both?

--Jhertel (talk) 01:04, 29 August 2012 (UTC)[reply]

http://www.andrew.cmu.edu/course/06-703/Creeping%20Flow.pdf says that "One limiting case is creeping flow which corresponds to the limit in which the Reynolds number is small (i.e. Re → 0)." So, it seems like "creeping flow" is not the same as Stokes flow. My guess is that "creeping motion" is the same as "creeping flow", but I don't know. --Jhertel (talk) 01:16, 29 August 2012 (UTC)[reply]

I did a google search for "creeping motion" and found this picture. I guess "creeping motion" is not the same thing as "Stokes flow". —Kri (talk) 11:54, 29 August 2012 (UTC)[reply]