Jump to content

Talk:Tungsten hexafluoride

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 79.243.242.143 (talk) at 14:02, 7 September 2013 (→‎everything heavier than WF6 is not gaseous: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconChemicals: Core B‑class Mid‑importance
WikiProject iconThis article is within the scope of WikiProject Chemicals, a daughter project of WikiProject Chemistry, which aims to improve Wikipedia's coverage of chemicals. To participate, help improve this article or visit the project page for details on the project.
BThis article has been rated as B-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-importance on the project's importance scale.
Taskforce icon
This is a core article in the WikiProject Chemicals worklist.

Correction: Tungsten hexafluoride is not the densest known gas, that prize goes to uranium hexafluoride. Physchim62 15:54, 24 May 2005 (UTC)[reply]

Uranium hexafluoride is a volatile solid; it sublimes at 56.5 ˚C. So at room temperature, tungsten hexafluoride is still the densest "gas". The solid UF6 would almost certainly exist in equilibrium with some vapor, so depends on what you consider gas. --71.227.190.111 03:54, 31 July 2006 (UTC)[reply]

Semiconductor industry

"The dominant application of tungsten fluoride is in semiconductor industry" well, even if only a minor part of the tungsten carbide is manufactured through the tungsten hexafluoride process this would probably be a more important application at least by volume. —Preceding unsigned comment added by 150.227.15.253 (talk) 08:30, 27 July 2010 (UTC)[reply]

Corrections

Tungsten hex is a water white colorless liquid. If it is contaminated with Cr then it is yellow to orangish red depending on how much Cr and which Cr speicies is contaminating it. It will form HF on contact with water and it will cause damage, not may. 24.229.244.111 17:10, 11 February 2006 (UTC)[reply]

Comments

  • Well, I guess that the prize for the most dense gas could become legalistic, depending on conditions and the degree to which one wants to discuss transient species and plasmas, but by most normal perspectives UF6 is probably it. I dont know if perfluorides are known for the still heavier elements such the congener of W.
  • Back to the WF6 report. It is claimed to be "odorless". Thus, the rate of hydrolysis must be quite slow, because I would expect it to smell like HF.
  • Also, I propose to replace the tentative "may"s in the following quote, fix the awkward which ( implying that water can penetrate...), and remove the claim that WF6 can damage bone (seems silly)

"WF6 may form hydrofluoric acid (HF) on contact with water, which can penetrate the skin and cause damage to the subdermal tissues and bone. Inhalation may cause respiratory tract burns and can be toxic. This compound is a lachrymator which causes tearing and irritation of the eyes. Contact may cause burns to the eyes, skin and mucous membranes." One question is whether WF6 poses dangers beyond being an in situ source of con HF. Smokefoot 17:44, 11 February 2006 (UTC) I have physically seen WF6 react instantly with the moisture in the air to form a smokey white cloud. As for its odor, I am glad I don't know what it smells like! (24.229.244.111 02:54, 15 February 2006 (UTC))[reply]

Synthesis

The statements made about its synthesis do not make much sense and seem to be circular. Besides the reference is not very satisfactory because it is a patent about its use rather than its synthesis and only the abstract seems open to scrutiny. Jcwf (talk) 03:43, 20 November 2008 (UTC)[reply]

I attempted to address this gap about the prep and gave more general refs. It is made by direct fluorination.--Smokefoot (talk) 04:55, 20 November 2008 (UTC)[reply]

everything heavier than WF6 is not gaseous

Is there some reason why this must be? I mean some theoretical calculations which support this observation in an elementary way? In the theory of ideal gases, the molar mass of the molecule does not play a role, it is just characterized by the lack of strong intermolecular forces. Or is it just observation? There are some other candidates which are possibly gaseous at standard conditions, and which would be heavier than WF6, e.g. Uuo or SgF6. But on the other hand, all of them are strongly doubted to be gaseous - due to relativistic effects, or due to some "law" which says they are too heavy? --79.243.242.143 (talk) 14:02, 7 September 2013 (UTC)[reply]