User:Sainsf/sandbox: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
adding {{dashboard.wikiedu.org sandbox}}
preparing article for rough editing
Tag: use of predatory open access journal
Line 3: Line 3:
<!-- EDIT BELOW THIS LINE -->
<!-- EDIT BELOW THIS LINE -->


A '''molecular machine''', '''nanite''', or '''nanomachine'''<ref name="Satir2008">{{cite journal
<ref name="castello">{{cite book |last1=Castelló |first1=J. R. |title=Bovids of the World: Antelopes, Gazelles, Cattle, Goats, Sheep, and Relatives |date=2016 |publisher=Princeton University Press |location=Princeton |isbn=978-0-691-16717-6 |chapter-url={{Google Books|id=zWyYDwAAQBAJ|page=|plainurl=yes}}|chapter=x}}</ref> 158 gerenuk;
| last = Satir
| first = Peter
|author2=Søren T. Christensen
| title = Structure and function of mammalian cilia
| journal = Histochemistry and Cell Biology
| volume = 129
| issue = 6
| pages = 687–93
| date = 2008-03-26
| doi = 10.1007/s00418-008-0416-9
| id = 1432-119X
| pmid = 18365235
| pmc = 2386530 }}</ref> is a molecular component that produces quasi-mechanical movements (output) in response to specific stimuli (input).<ref>{{cite journal |vauthors=Ballardini R, Balzani V, Credi A, Gandolfi MT, Venturi M | title = Artificial Molecular-Level Machines: Which Energy To Make Them Work? | year = 2001 | journal = [[Acc. Chem. Res.]] | volume = 34 | issue = 6 | pages = 445–455 | doi = 10.1021/ar000170g | pmid = 11412081 | url=http://pubs.acs.org/cgi-bin/abstract.cgi/achre4/2001/34/i06/abs/ar000170g.html}}</ref><ref>{{cite journal | vauthors = Aprahamian I | title = The Future of Molecular Machines | journal = ACS Central Science | volume = 6 | issue = 3 | pages = 347–358 | date = March 2020 | pmid = 32232135 | pmc = 7099591 | doi = 10.1021/acscentsci.0c00064 }}</ref> In [[cellular biology]], '''macromolecular machines''' frequently perform tasks essential for life, such as [[DNA replication]] and [[ATP synthase|ATP synthesis]]. The expression is often more generally applied to molecules that simply mimic functions that occur at the macroscopic level. The term is also common in [[nanotechnology]] where a number of highly complex molecular machines have been proposed that are aimed at the goal of constructing a [[molecular assembler]].<ref>{{Cite journal|last=Drexler|first=K. E.|date=July 1991|title=Molecular directions in nanotechnology|journal=Nanotechnology|language=en|volume=2|issue=3|pages=113–118|doi=10.1088/0957-4484/2/3/002|bibcode=1991Nanot...2..113D|s2cid=250739962 |issn=0957-4484}}</ref><ref>{{cite web |url=https://spectrum.ieee.org/tech-talk/semiconductors/devices/revolutionary_nanotechnology_w |title=Revolutionary Nanotechnology: Wet or Dry? |work=IEEE Spectrum |first=Dexter |last=Johnson |date=June 11, 2007}}</ref>
[[Image:Kinesin_walking.gif|thumb|300px| [[Kinesin]] walking on a [[microtubule]] is a molecular [[biological machine]] using [[protein dynamics#Global flexibility: multiple domains|protein domain dynamics]] on [[Nanoscopic scale|nanoscale]]s]]


For the last several decades, chemists and physicists alike have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world. Molecular machines are at the forefront of cellular biology research. The 2016 [[Nobel Prize in Chemistry]] was awarded to [[Jean-Pierre Sauvage]], [[Fraser Stoddart|Sir J. Fraser Stoddart]], and [[Ben Feringa|Bernard L. Feringa]] for the design and synthesis of molecular machines.<ref name="NP-20161005">{{cite news |author=Staff |title=The Nobel Prize in Chemistry 2016 |url=https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html |date=5 October 2016 |work=[[Nobel Foundation]] |access-date=5 October 2016 }}</ref><ref name="NYT-20161005">{{cite news |last1=Chang |first1=Kenneth |last2=Chan |first2=Sewell |title=3 Makers of 'World's Smallest Machines' Awarded Nobel Prize in Chemistry |url=https://www.nytimes.com/2016/10/06/science/nobel-prize-chemistry.html |date=5 October 2016 |work=[[New York Times]] |access-date=5 October 2016 }}</ref>
<ref>{{cite book |last1=Estes |first1=R. D. |title=The Safari Companion: A Guide to Watching African Mammals,Including Hoofed Mammals, Carnivores, and Primates |date=1999 |publisher=Chelsea Green Pub. Co |location=Vermont |isbn=1-890132-44-6 |edition=Revised |chapter-url={{Google Books|id=Xqp7poFviNcC|page=|plainurl=yes}}|chapter=x }}</ref>


== Types ==
{{cite journal |last1=Veitschegger |first1=K. |title=The effect of body size evolution and ecology on encephalization in cave bears and extant relatives |journal=BMC Evolutionary Biology |date=2017 |volume=17 |issue=1 |page=124 |doi=10.1186/s12862-017-0976-1|pmid=28583080 |pmc=5460516 }}
Molecular machines can be divided into two broad categories; artificial and biological. In general, artificial molecular machines (AMMs) refer to molecules that are artificially designed and synthesized whereas biological molecular machines can commonly be found in nature and have evolved into their forms after [[abiogenesis]] on Earth.<ref name="Erbas-Cakmak 2015 10081–10206">{{Cite journal|last1=Erbas-Cakmak|first1=Sundus|last2=Leigh|first2=David A.|last3=McTernan|first3=Charlie T.|last4=Nussbaumer|first4=Alina L.|title=Artificial Molecular Machines|journal=Chemical Reviews|volume=115|issue=18|pages=10081–10206|doi=10.1021/acs.chemrev.5b00146|pmid=26346838|pmc=4585175|year=2015}}</ref>


===Artificial===
{{cite book|series=Topics in Geobiology|author=Defler, T.|title=History of Terrestrial Mammals in South America: How South American Mammalian Fauna Changed from the Mesozoic to Recent Times|publisher=Springer|isbn=978-3-319-98449-0|location=Cham (Switzerland)|chapter=The Xenarthrans: armadillos, glyptodonts, anteaters, and sloths|chapter-url={{Google Books|page=116|plainurl=yes|id=HWADwAAQBAJ}}|date=2019}}
A wide variety of artificial molecular machines (AMMs) have been synthesized by [[chemists]] which are rather simple and small compared to biological molecular machines.<ref name="Erbas-Cakmak 2015 10081–10206" /> The first AMM, a [[molecular shuttle]], was synthesized by [[Fraser Stoddart|Sir J. Fraser Stoddart]].<ref name="10.1021/ja00013a096">{{cite journal |last1=Anelli |first1=Pier Lucio |last2=Spencer |first2=Neil |last3=Stoddart |first3=J. Fraser |title=A molecular shuttle |journal=Journal of the American Chemical Society |date=June 1991 |volume=113 |issue=13 |pages=5131–5133 |doi=10.1021/ja00013a096|pmid=27715028 |doi-access=free }}</ref>
A [[molecular shuttle]] is a [[rotaxane]] molecule where a ring is mechanically interlocked onto an axle with two bulky stoppers. The ring can move between two binding sites with various stimuli such as light, pH, solvents, and ions.<ref>{{cite journal |last1=Bruns |first1=Carson J. |last2=Stoddart |first2=J. Fraser |title=Rotaxane-Based Molecular Muscles |journal=Accounts of Chemical Research |date=30 May 2014 |volume=47 |issue=7 |pages=2186–2199 |doi=10.1021/ar500138u|pmid=24877992 }}</ref> As the authors of this 1991 ''[[Journal of the American Chemical Society|JACS]]'' paper noted: "Insofar as it becomes possible to control the movement of one molecular component with respect to the other in a [2]rotaxane, the technology for building molecular machines will emerge", [[mechanically interlocked molecular architectures]] spearheaded AMM design and synthesis as they provide directed molecular motion.<ref>{{cite journal |last1=Kay |first1=Euan R. |last2=Leigh |first2=David A. |title=Rise of the Molecular Machines |journal=Angewandte Chemie International Edition |date=24 August 2015 |volume=54 |issue=35 |pages=10080–10088 |doi=10.1002/anie.201503375|pmid=26219251 |pmc=4557038 }}</ref> Today a wide variety of AMMs exists as listed below.


[[File:Overcrowded alkane molecular motor.png|thumb|Overcrowded alkane molecular motor.]]
{{cite book|title=The Princeton Field Guide to Prehistoric Mammals|author=Prothero, D. R.|date=2017|publisher=Princeton University Press|location=New Jersey|isbn=978-0-691-15682-8|chapter=Xenarthra: Sloths, anteaters, and armadillos|chapter-url={{google books|id=eiftDAAAQBAJ|page=51|plainurl=yes}} |pages=51–57}}


====Molecular motors====
<span style="text-shadow:#7CB9E8 0px 0px 9px;font-family:Calibri;font-size:12pt">[[User:Sainsf|<span style="color:#2a52be">Sainsf</span>]] '''·''' [[User talk:Sainsf|<span style="color:#7851a9; font-size:9pt">(How ya doin'?)</span>]]</span>
[[Synthetic molecular motor|Molecular motors]] are molecules that are capable of directional rotary motion around a single or double bond.<ref>{{Cite journal |last1=Fletcher|first1=Stephen P.|last2=Dumur|first2=Frédéric|last3=Pollard|first3=Michael M.|last4=Feringa|first4=Ben L.|date=2005-10-07|title=A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy |journal=Science |volume=310|issue=5745|pages=80–82 |doi=10.1126/science.1117090|issn=0036-8075 |pmid=16210531 |bibcode=2005Sci...310...80F |s2cid=28174183 |url=https://www.rug.nl/research/portal/en/publications/a-reversible-unidirectional-molecular-rotary-motor-driven-by-chemical-energy(50a4c59b-e2fd-413b-a58f-bd37494432e9).html|hdl=11370/50a4c59b-e2fd-413b-a58f-bd37494432e9|hdl-access=free}}</ref><ref>{{Cite journal |last1=Perera|first1=U. G. E.|last2=Ample|first2=F.|last3=Kersell|first3=H.|last4=Zhang|first4=Y.|last5=Vives|first5=G.|last6=Echeverria|first6=J.|last7=Grisolia|first7=M.|last8=Rapenne|first8=G.|last9=Joachim|first9=C.|date=January 2013|title=Controlled clockwise and anticlockwise rotational switching of a&nbsp;molecular motor|journal=Nature Nanotechnology|volume=8|issue=1|pages=46–51|doi=10.1038/nnano.2012.218|pmid=23263725|issn=1748-3395|bibcode=2013NatNa...8...46P}}</ref><ref>{{Cite journal|last1=Schliwa|first1=Manfred|last2=Woehlke|first2=Günther|date=2003-04-17|title=Molecular motors|journal=Nature|volume=422|issue=6933|pages=759–765|doi=10.1038/nature01601|pmid=12700770|bibcode=2003Natur.422..759S|s2cid=4418203}}</ref><ref>{{Cite journal|last1=van Delden|first1=Richard A.|last2=Wiel|first2=Matthijs K. J. ter|last3=Pollard|first3=Michael M.|last4=Vicario|first4=Javier|last5=Koumura|first5=Nagatoshi|last6=Feringa|first6=Ben L.|date=October 2005|title=Unidirectional molecular motor on a gold surface|journal=Nature|volume=437|issue=7063|pages=1337–1340|doi=10.1038/nature04127|pmid=16251960|issn=1476-4687|bibcode=2005Natur.437.1337V|s2cid=4416787|url=https://pure.rug.nl/ws/files/10188130/2005NaturevDelden.pdf}}</ref> Single bond rotary motors<ref>{{cite journal |last1=Kelly |first1=T. Ross |last2=De Silva |first2=Harshani |last3=Silva |first3=Richard A. |title=Unidirectional rotary motion in a molecular system |journal=Nature |date=9 September 1999 |volume=401 |issue=6749 |pages=150–152 |doi=10.1038/43639|pmid=10490021 |bibcode=1999Natur.401..150K |s2cid=4351615 }}</ref> are generally activated by chemical reactions whereas double bond rotary motors<ref>{{cite journal |last1=Koumura |first1=Nagatoshi |last2=Zijlstra |first2=Robert W. J. |last3=van Delden |first3=Richard A. |last4=Harada |first4=Nobuyuki |last5=Feringa |first5=Ben L. |title=Light-driven monodirectional molecular rotor |journal=Nature |date=9 September 1999 |volume=401 |issue=6749 |pages=152–155 |doi=10.1038/43646 |pmid=10490022 |url=https://pure.rug.nl/ws/files/3616669/1999NatureKoumura.pdf |bibcode=1999Natur.401..152K |s2cid=4412610 |hdl=11370/d8399fe7-11be-4282-8cd0-7c0adf42c96f |hdl-access=free }}</ref> are generally fueled by light. The rotation speed of the motor can also be tuned by careful molecular design.<ref>{{cite journal |last1=Vicario |first1=Javier |last2=Meetsma |first2=Auke |last3=Feringa |first3=Ben L. |title=Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification |journal=Chemical Communications |volume=116 |date=2005 |issue=47 |pages=5910–2 |doi=10.1039/B507264F|pmid=16317472 |url=https://www.rug.nl/research/portal/en/publications/controlling-the-speed-of-rotation-in-molecular-motors-dramatic-acceleration-of-the-rotary-motion-by-structural-modification(002a32ff-d6bf-4078-a546-c2a1ace86aa2).html }}</ref> [[Carbon nanotube nanomotor]]s have also been produced.<ref>{{cite journal |last1=Fennimore |first1=A. M. |last2=Yuzvinsky |first2=T. D. |last3=Han |first3=Wei-Qiang |last4=Fuhrer |first4=M. S. |last5=Cumings |first5=J. |last6=Zettl |first6=A. |title=Rotational actuators based on carbon nanotubes |journal=Nature |date=24 July 2003 |volume=424 |issue=6947 |pages=408–410 |doi=10.1038/nature01823|pmid=12879064 |bibcode=2003Natur.424..408F |s2cid=2200106 }}</ref>


====Molecular propeller====
<span style="text-shadow:#7CB9E8 0px 0px 9px;font-family:Calibri;font-size:12pt">[[User:Sainsf|<span style="color:#2a52be">Sainsf</span>]] '''·''' <span style="font-size:10pt">([[User talk:Sainsf|t]]'''⋆'''[[Special:Contributions/Sainsf|c]])</span></span> 05:18, 16 May 2020 (UTC)
A [[molecular propeller]] is a molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers.<ref>{{cite journal |last1=Simpson |first1=Christopher D. |last2=Mattersteig |first2=Gunter |last3=Martin |first3=Kai |last4=Gherghel |first4=Lileta |last5=Bauer |first5=Roland E. |last6=Räder |first6=Hans Joachim |last7=Müllen |first7=Klaus |title=Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers |journal=Journal of the American Chemical Society |date=March 2004 |volume=126 |issue=10 |pages=3139–3147 |doi=10.1021/ja036732j |pmid=15012144 }}</ref><ref>{{cite journal |doi=10.1103/PhysRevLett.98.266102|pmid=17678108|title=Chemically Tunable Nanoscale Propellers of Liquids|journal=Physical Review Letters|volume=98|issue=26|pages=266102|year=2007|last1=Wang|first1=Boyang|last2=Král|first2=Petr|bibcode=2007PhRvL..98z6102W}}</ref> It has several molecular-scale blades attached at a certain pitch angle around the circumference of a nanoscale shaft. Also see [[molecular gyroscope]].

[[File:Daisy chain rotaxane.png|thumb|Daisy chain [2]rotaxane. These molecules are considered as building blocks for artificial muscle.]]

====Molecular switch====
A [[molecular switch]] is a molecule that can be reversibly shifted between two or more stable states.<ref name="10.1021/cr9900228">{{cite journal |last1=Feringa |first1=Ben L. |last2=van Delden |first2=Richard A. |last3=Koumura |first3=Nagatoshi |last4=Geertsema |first4=Edzard M. |title=Chiroptical Molecular Switches |journal=Chemical Reviews |date=May 2000 |volume=100 |issue=5 |pages=1789–1816 |doi=10.1021/cr9900228|pmid=11777421 |s2cid=11740379 |url=https://pure.rug.nl/ws/files/3616486/1996AdvMaterFeringa.pdf }}</ref> The molecules may be shifted between the states in response to changes in pH, light ([[photoswitch]]), temperature, an electric current, microenvironment, or the presence of a ligand.<ref name="10.1021/cr9900228" /><ref>{{cite journal |last1=Knipe |first1=Peter C. |last2=Thompson |first2=Sam |last3=Hamilton |first3=Andrew D. |title=Ion-mediated conformational switches |journal=Chemical Science |date=2015 |volume=6 |issue=3 |pages=1630–1639 |doi=10.1039/C4SC03525A|pmid=28694943 |pmc=5482205 }}</ref><ref name=":0">{{cite journal|title=Hünlich base derivatives as photo-responsive Λ-shaped hinges|journal=Organic Chemistry Frontiers|date=2017|volume=4|issue=2|pages=224–228|doi=10.1039/C6QO00653A|url=http://pubs.rsc.org/-/content/articlehtml/2017/qo/c6qo00653a | last1 = Kazem-Rostami | first1 = Masoud | last2 = Moghanian | first2 = Amirhossein}}</ref>

[[File:Molecular switch.png|thumb|Rotaxane based molecular shuttle.]]

====Molecular shuttle====
A [[molecular shuttle]] is a molecule capable of shuttling molecules or ions from one location to another.<ref name="10.1038/369133a0">{{cite journal |last1=Bissell |first1=Richard A |last2=Córdova |first2=Emilio |last3=Kaifer |first3=Angel E. |last4=Stoddart |first4=J. Fraser |title=A chemically and electrochemically switchable molecular shuttle |journal=Nature |date=12 May 1994 |volume=369 |issue=6476 |pages=133–137 |doi=10.1038/369133a0|bibcode=1994Natur.369..133B |s2cid=44926804 }}</ref> A common molecular shuttle consists of a rotaxane where the macrocycle can move between two sites or stations along the dumbbell backbone.<ref name="10.1038/369133a0" /><ref name="10.1021/ja00013a096" /><ref>{{Cite journal|last1=Chatterjee|first1=Manashi N.|last2=Kay|first2=Euan R.|last3=Leigh|first3=David A.|date=2006-03-01|title=Beyond Switches: Ratcheting a Particle Energetically Uphill with a Compartmentalized Molecular Machine|journal=Journal of the American Chemical Society|volume=128|issue=12|pages=4058–4073|doi=10.1021/ja057664z|pmid=16551115|issn=0002-7863}}</ref>

====Nanocar====
[[Nanocar]]s are single molecule vehicles that resemble macroscopic automobiles and are important for understanding how to control molecular diffusion on surfaces. The first nanocars were synthesized by [[James M. Tour]] in 2005. They had an H shaped chassis and 4 molecular wheels ([[fullerenes]]) attached to the four corners.<ref>{{cite journal |last1=Shirai |first1=Yasuhiro |last2=Osgood |first2=Andrew J. |last3=Zhao |first3=Yuming |last4=Kelly |first4=Kevin F. |last5=Tour |first5=James M. |title=Directional Control in Thermally Driven Single-Molecule Nanocars |journal=Nano Letters |date=November 2005 |volume=5 |issue=11 |pages=2330–2334 |doi=10.1021/nl051915k|pmid=16277478 |bibcode=2005NanoL...5.2330S }}</ref> In 2011, [[Ben Feringa]] and co-workers synthesized the first motorized nanocar which had molecular motors attached to the chassis as rotating wheels.<ref>{{cite journal |last1=Kudernac |first1=Tibor |last2=Ruangsupapichat |first2=Nopporn |last3=Parschau |first3=Manfred |last4=Maciá |first4=Beatriz |last5=Katsonis |first5=Nathalie |last6=Harutyunyan |first6=Syuzanna R. |last7=Ernst |first7=Karl-Heinz |last8=Feringa |first8=Ben L. |title=Electrically driven directional motion of a four-wheeled molecule on a metal surface |journal=Nature |date=10 November 2011 |volume=479 |issue=7372 |pages=208–211 |doi=10.1038/nature10587|pmid=22071765 |bibcode=2011Natur.479..208K |s2cid=6175720 }}</ref> The authors were able to demonstrate directional motion of the nanocar on a copper surface by providing energy from a scanning tunneling microscope tip. Later, in 2017, the world's first ever [[Nanocar Race]] took place in [[Toulouse]].

====Molecular balance====
A molecular balance<ref>{{Cite journal|last1=Paliwal|first1=S.|last2=Geib|first2=S.|last3=Wilcox|first3=C. S.|date=1994-05-01|title=Molecular Torsion Balance for Weak Molecular Recognition Forces. Effects of "Tilted-T" Edge-to-Face Aromatic Interactions on Conformational Selection and Solid-State Structure|journal=Journal of the American Chemical Society|volume=116|issue=10|pages=4497–4498|doi=10.1021/ja00089a057|issn=0002-7863}}</ref><ref>{{Cite journal|last1=Mati|first1=Ioulia K.|last2=Cockroft|first2=Scott L.|date=2010-10-19|title=Molecular balances for quantifying non-covalent interactions|journal=Chemical Society Reviews|volume=39|issue=11|pages=4195–205|doi=10.1039/B822665M|pmid=20844782|issn=1460-4744|url=https://www.pure.ed.ac.uk/ws/files/10097959/Molecular_balances_for_quantifying_non_covalent_interactions.pdf|hdl=20.500.11820/7ce18ff7-1196-48a1-8c67-3bc3f6b46946|s2cid=263667 |hdl-access=free}}</ref> is a molecule that can interconvert between two and more conformational or configurational states in response to the dynamic of multiple intra- and intermolecular driving forces, such as [[hydrogen bonding]], [[solvophobic]]/hydrophobic effects,<ref>{{Cite journal|last1=Yang|first1=Lixu|last2=Adam|first2=Catherine|last3=Cockroft|first3=Scott L.|date=2015-08-19|title=Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions|journal=Journal of the American Chemical Society|volume=137|issue=32|pages=10084–10087|doi=10.1021/jacs.5b05736|pmid=26159869|issn=0002-7863|hdl=20.500.11820/604343eb-04aa-4d90-82d2-0998898400d2|url=https://www.pure.ed.ac.uk/ws/files/24692670/scockroft.docx|hdl-access=free}}</ref> [[Pi interaction|π interactions]],<ref>{{Cite journal|last1=Li|first1=Ping|last2=Zhao|first2=Chen|last3=Smith|first3=Mark D.|last4=Shimizu|first4=Ken D.|date=2013-06-07|title=Comprehensive Experimental Study of N-Heterocyclic π-Stacking Interactions of Neutral and Cationic Pyridines|journal=The Journal of Organic Chemistry|volume=78|issue=11|pages=5303–5313|doi=10.1021/jo400370e|pmid=23675885|issn=0022-3263}}</ref> and steric and dispersion interactions.<ref>{{Cite journal|last1=Hwang|first1=Jungwun|last2=Li|first2=Ping|last3=Smith|first3=Mark D.|last4=Shimizu|first4=Ken D.|date=2016-07-04|title=Distance-Dependent Attractive and Repulsive Interactions of Bulky Alkyl Groups|journal=Angewandte Chemie International Edition|volume=55|issue=28|pages=8086–8089|doi=10.1002/anie.201602752|pmid=27159670|issn=1521-3773|doi-access=free}}</ref> Molecular balances can be small molecules or macromolecules such as proteins. Cooperatively folded proteins, for example, have been used as molecular balances to measure interaction energies and conformational propensities.<ref>{{Cite journal|last1=Ardejani|first1=Maziar S.|last2=Powers|first2=Evan T.|last3=Kelly|first3=Jeffery W.|date=2017-08-15|title=Using Cooperatively Folded Peptides To Measure Interaction Energies and Conformational Propensities|journal=Accounts of Chemical Research|volume=50|issue=8|pages=1875–1882|doi=10.1021/acs.accounts.7b00195|issn=0001-4842|pmc=5584629|pmid=28723063}}</ref>

====Molecular tweezers====
[[Molecular tweezers]] are host molecules capable of holding items between their two arms.<ref>{{cite journal |last1=Chen |first1=C. W. |last2=Whitlock |first2=H. W. |title=Molecular tweezers: a simple model of bifunctional intercalation |journal=Journal of the American Chemical Society |date=July 1978 |volume=100 |issue=15 |pages=4921–4922 |doi=10.1021/ja00483a063}}</ref> The open cavity of the molecular tweezers binds items using non-covalent bonding including hydrogen bonding, metal coordination, hydrophobic forces, [[van der Waals force]]s, [[Pi interaction|π interactions]], or electrostatic effects.<ref>{{cite journal |last1=Klärner |first1=Frank-Gerrit |last2=Kahlert |first2=Björn |title=Molecular Tweezers and Clips as Synthetic Receptors. Molecular Recognition and Dynamics in Receptor−Substrate Complexes |journal=Accounts of Chemical Research |date=December 2003 |volume=36 |issue=12 |pages=919–932 |doi=10.1021/ar0200448|pmid=14674783 }}</ref> Examples of molecular tweezers have been reported that are constructed from DNA and are considered [[DNA machine]]s.<ref>{{cite journal |last1=Yurke |first1=Bernard |last2=Turberfield |first2=Andrew J. |last3=Mills |first3=Allen P. |last4=Simmel |first4=Friedrich C. |last5=Neumann |first5=Jennifer L. |title=A DNA-fuelled molecular machine made of DNA |journal=Nature |date=10 August 2000 |volume=406 |issue=6796 |pages=605–608 |doi=10.1038/35020524|pmid=10949296 |bibcode=2000Natur.406..605Y |s2cid=2064216 }}</ref>

====Molecular sensor====
A [[molecular sensor]] is a molecule that interacts with an analyte to produce a detectable change.<ref>{{cite journal |vauthors=Cavalcanti A, Shirinzadeh B, Freitas Jr RA, Hogg T | title = Nanorobot architecture for medical target identification | year = 2008 | journal = [http://wwwARRAYopARRAYrg/EJ/journal/Nano Nanotechnology] | volume = 19 | issue = 1 | pages = 015103(15pp) | doi = 10.1088/0957-4484/19/01/015103 | bibcode=2008Nanot..19a5103C| s2cid = 15557853 }}</ref><ref>{{cite journal |last1=Wu |first1=Di |last2=Sedgwick |first2=Adam C. |last3=Gunnlaugsson |first3=Thorfinnur |last4=Akkaya |first4=Engin U. |last5=Yoon |first5=Juyoung |last6=James |first6=Tony D. |title=Fluorescent chemosensors: the past, present and future |journal=Chemical Society Reviews |date=2017 |volume=46 |issue=23 |pages=7105–7123 |doi=10.1039/C7CS00240H|pmid=29019488 |hdl=11693/38177 |doi-access=free }}</ref> Molecular sensors combine molecular recognition with some form of reporter, so the presence of the item can be observed.

====Molecular logic gate====
A [[molecular logic gate]] is a molecule that performs a logical operation on one or more logic inputs and produces a single logic output.<ref>{{cite journal |last1=Prasanna de Silva |first1=A. |last2=McClenaghan |first2=Nathan D. |title=Proof-of-Principle of Molecular-Scale Arithmetic |journal=Journal of the American Chemical Society |date=April 2000 |volume=122 |issue=16 |pages=3965–3966 |doi=10.1021/ja994080m}}</ref><ref>{{cite journal |last1=Magri |first1=David C. |last2=Brown |first2=Gareth J. |last3=McClean |first3=Gareth D. |last4=de Silva |first4=A. Prasanna |title=Communicating Chemical Congregation: A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype |journal=Journal of the American Chemical Society |date=April 2006 |volume=128 |issue=15 |pages=4950–4951 |doi=10.1021/ja058295+|pmid=16608318}}</ref> Unlike a molecular sensor, the molecular logic gate will only output when a particular combination of inputs are present.

====Molecular assembler====
A [[molecular assembler]] is a molecular machine able to guide [[chemical reaction]]s by positioning reactive molecules with precision.<ref>{{Cite journal|last1=Lewandowski|first1=Bartosz|last2=De Bo|first2=Guillaume|author-link2=Guillaume De Bo|last3=Ward|first3=John W.|last4=Papmeyer|first4=Marcus|last5=Kuschel|first5=Sonja|last6=Aldegunde|first6=María J.|last7=Gramlich|first7=Philipp M. E.|last8=Heckmann|first8=Dominik|last9=Goldup|first9=Stephen M.|date=2013-01-11|title=Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine|journal=Science|volume=339|issue=6116|pages=189–193|doi=10.1126/science.1229753|issn=0036-8075|pmid=23307739|bibcode=2013Sci...339..189L|s2cid=206544961|url=https://www.research.manchester.ac.uk/portal/en/publications/sequencespecific-peptide-synthesis-by-an-artificial-smallmolecule-machine(dc7b8f29-3915-46cd-93a5-1b2419ee7466).html}}</ref><ref>{{Cite journal|last1=De Bo|first1=Guillaume|author-link1=Guillaume De Bo|last2=Kuschel|first2=Sonja|last3=Leigh|first3=David A.|last4=Lewandowski|first4=Bartosz|last5=Papmeyer|first5=Marcus|last6=Ward|first6=John W.|date=2014-04-16|title=Efficient Assembly of Threaded Molecular Machines for Sequence-Specific Synthesis|journal=Journal of the American Chemical Society|volume=136|issue=15|pages=5811–5814|doi=10.1021/ja5022415|pmid=24678971|issn=0002-7863|doi-access=free}}</ref><ref>{{Cite journal|last1=De Bo|first1=Guillaume|author-link1=Guillaume De Bo|last2=Gall|first2=Malcolm A. Y.|last3=Kitching|first3=Matthew O.|last4=Kuschel|first4=Sonja|last5=Leigh|first5=David A.|last6=Tetlow|first6=Daniel J.|last7=Ward|first7=John W.|date=2017-08-09|title=Sequence-Specific β-Peptide Synthesis by a Rotaxane-Based Molecular Machine|journal=Journal of the American Chemical Society|volume=139|issue=31|pages=10875–10879|doi=10.1021/jacs.7b05850|pmid=28723130|issn=0002-7863|url=http://dro.dur.ac.uk/22931/1/22931.pdf}}</ref><ref>{{Cite journal|last1=Kassem|first1=Salma|last2=Lee|first2=Alan T. L.|last3=Leigh|first3=David A.|last4=Marcos|first4=Vanesa|last5=Palmer|first5=Leoni I.|last6=Pisano|first6=Simone|date=September 2017|title=Stereodivergent synthesis with a programmable molecular machine|journal=Nature|volume=549|issue=7672|pages=374–378|doi=10.1038/nature23677|pmid=28933436|issn=1476-4687|bibcode=2017Natur.549..374K|s2cid=205259758|url=https://www.research.manchester.ac.uk/portal/en/publications/stereodivergent-synthesis-with-a-programmable-molecular-machine(dd2b7aed-b6ff-455a-8fb7-e31851cea5e6).html}}</ref><ref>{{Cite journal|last1=De Bo|first1=Guillaume|author-link1=Guillaume De Bo|last2=Gall|first2=Malcolm A. Y.|last3=Kuschel|first3=Sonja|last4=Winter|first4=Julien De|last5=Gerbaux|first5=Pascal|last6=Leigh|first6=David A.|date=2018-04-02|title=An artificial molecular machine that builds an asymmetric catalyst|journal=Nature Nanotechnology|volume=13|issue=5|pages=381–385|doi=10.1038/s41565-018-0105-3|pmid=29610529|issn=1748-3395|bibcode=2018NatNa..13..381D|s2cid=4624041|url=https://www.research.manchester.ac.uk/portal/en/publications/an-artificial-molecular-machine-that-builds-an-asymmetric-catalyst(569800d8-beb2-4d4a-acd5-84d0369ddabb).html}}</ref>

====Molecular hinge====
{{anchor|molecular hinge}}A molecular hinge is a molecule that can be selectively switched from one configuration to another in a reversible fashion.<ref>{{cite journal |last1=Kay |first1=Euan R. |last2=Leigh |first2=David A. |last3=Zerbetto |first3=Francesco |title=Synthetic Molecular Motors and Mechanical Machines |journal=Angewandte Chemie International Edition |date=January 2007 |volume=46 |issue=1–2 |pages=72–191 |doi=10.1002/anie.200504313|pmid=17133632 }}</ref> Such configurations must have distinguishable geometries; for instance, [[Azobenzene|azobenzene]] groups in a linear molecule may undergo [[Cis–trans isomerism|''cis''-''trans'' isomerizations]]<ref>{{cite journal |last1=Bandara |first1=H. M. Dhammika |last2=Burdette |first2=Shawn C. |title=Photoisomerization in different classes of azobenzene |journal=Chem. Soc. Rev. |date=2012 |volume=41 |issue=5 |pages=1809–1825 |doi=10.1039/c1cs15179g|pmid=22008710 }}</ref> when irradiated with ultraviolet light, triggering a reversible transition to a bent or V-shaped conformation.<ref>{{cite journal |last1=Wang |first1=Jing |last2=Jiang |first2=Qian |last3=Hao |first3=Xingtian |last4=Yan |first4=Hongchao |last5=Peng |first5=Haiyan |last6=Xiong |first6=Bijin |last7=Liao |first7=Yonggui |last8=Xie |first8=Xiaolin |title=Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer |journal=RSC Advances |date=2020 |volume=10 |issue=7 |pages=3726–3733 |doi=10.1039/C9RA10161F|bibcode=2020RSCAd..10.3726W |doi-access=free }}</ref><ref>{{cite journal |last1=Hada |first1=Masaki |last2=Yamaguchi |first2=Daisuke |last3=Ishikawa |first3=Tadahiko |last4=Sawa |first4=Takayoshi |last5=Tsuruta |first5=Kenji |last6=Ishikawa |first6=Ken |last7=Koshihara |first7=Shin-ya |last8=Hayashi |first8=Yasuhiko |last9=Kato |first9=Takashi |title=Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules |journal=Nature Communications |date=13 September 2019 |volume=10 |issue=1 |pages=4159 |doi=10.1038/s41467-019-12116-6 |pmid=31519876 |pmc=6744564 |bibcode=2019NatCo..10.4159H |language=en |issn=2041-1723|doi-access=free }}</ref><ref>{{cite journal |last1=Garcia-Amorós |first1=Jaume |last2=Reig |first2=Marta |last3=Cuadrado |first3=Alba |last4=Ortega |first4=Mario |last5=Nonell |first5=Santi |last6=Velasco |first6=Dolores |title=A photoswitchable bis-azo derivative with a high temporal resolution |journal=Chem. Commun. |date=2014 |volume=50 |issue=78 |pages=11462–11464 |doi=10.1039/C4CC05331A|pmid=25132052 }}</ref><ref>{{Cite journal|date=2017|title=Design and synthesis of Ʌ-shaped photoswitchable compounds employing Tröger's base scaffold.|journal=Synthesis|volume=49 | issue = 6 |pages=1214–1222|doi=10.1055/s-0036-1588913|last1=Kazem-Rostami|first1=Masoud}}</ref> Molecular hinges typically rotate in a [[Crank (mechanism)|crank]]-like motion around a rigid axis, such as a double bond or aromatic ring.<ref>{{cite journal |last1=Kassem |first1=Salma |last2=van Leeuwen |first2=Thomas |last3=Lubbe |first3=Anouk S. |last4=Wilson |first4=Miriam R. |last5=Feringa |first5=Ben L. |last6=Leigh |first6=David A. |title=Artificial molecular motors |journal=Chemical Society Reviews |date=2017 |volume=46 |issue=9 |pages=2592–2621 |doi=10.1039/C7CS00245A|pmid=28426052 |url=https://pure.rug.nl/ws/files/49449226/c7cs00245a_1_.pdf }}</ref> However, [[Macrocycle|macrocyclic]] molecular hinges with more [[Clamp (tool)|clamp]]-like mechanisms have also been synthesized.<ref>{{cite journal |last1=Jones |first1=Christopher D. |last2=Kershaw Cook |first2=Laurence J. |last3=Marquez-Gamez |first3=David |last4=Luzyanin |first4=Konstantin V. |last5=Steed |first5=Jonathan W. |last6=Slater |first6=Anna G. |title=High-Yielding Flow Synthesis of a Macrocyclic Molecular Hinge |journal=Journal of the American Chemical Society |date=7 May 2021 |volume=143 |issue=19 |pages=7553–7565 |doi=10.1021/jacs.1c02891 |pmid=33961419 |pmc=8397308 |issn=0002-7863|doi-access=free }}</ref><ref>{{cite journal |last1=Despras |first1=Guillaume |last2=Hain |first2=Julia |last3=Jaeschke |first3=Sven Ole |title=Photocontrol over Molecular Shape: Synthesis and Photochemical Evaluation of Glycoazobenzene Macrocycles |journal=Chemistry - A European Journal |date=10 August 2017 |volume=23 |issue=45 |pages=10838–10847 |doi=10.1002/chem.201701232|pmid=28613430 }}</ref><ref>{{cite journal |last1=Nagamani |first1=S. Anitha |last2=Norikane |first2=Yasuo |last3=Tamaoki |first3=Nobuyuki |title=Photoinduced Hinge-Like Molecular Motion: Studies on Xanthene-Based Cyclic Azobenzene Dimers |journal=The Journal of Organic Chemistry |date=November 2005 |volume=70 |issue=23 |pages=9304–9313 |doi=10.1021/jo0513616|pmid=16268603 }}</ref>

===Biological===
[[Image:Protein translation.gif|thumb|300px|A ribosome performing the [[Transcription (biology)#Elongation|elongation]] and membrane targeting stages of [[eukaryotic translation|protein translation]]. The [[ribosome]] is green and yellow, the [[transfer RNA|tRNAs]] are dark blue, and the other proteins involved are light blue. The produced peptide is released into the [[endoplasmic reticulum]].]]
The most complex macromolecular machines are found within cells, often in the form of [[Protein complex|multi-protein complexes]].<ref>{{Cite book|title=Biochemistry|last=Donald|first=Voet|date=2011|publisher=John Wiley & Sons|others=Voet, Judith G.|isbn=9780470570951|edition= 4th|location=Hoboken, NJ|oclc=690489261}}</ref> Important examples of biological machines include [[motor proteins]] such as [[myosin]], which is responsible for [[muscle]] contraction, [[kinesin]], which moves cargo inside cells away from the [[Cell nucleus|nucleus]] along [[microtubules]], and [[dynein]], which moves cargo inside cells towards the nucleus and produces the axonemal beating of [[cilia#Motile cilia|motile cilia]] and [[flagella]]. "[I]n effect, the [motile cilium] is a nanomachine composed of perhaps over 600 proteins in molecular complexes, many of which also function independently as nanomachines&nbsp;... [[Flexible linker]]s allow the [[Protein domain#Domains and protein flexibility|mobile protein domains]] connected by them to recruit their binding partners and induce long-range [[allostery]] via [[Protein dynamics#Global flexibility: multiple domains|protein domain dynamics]]."<ref name="Satir2008"/> Other biological machines are responsible for energy production, for example [[ATP synthase]] which harnesses energy from [[Proton-motive force|proton gradients across membranes]] to drive a turbine-like motion used to synthesise [[Adenosine triphosphate|ATP]], the energy currency of a cell.<ref>{{Cite journal|last1=Kinbara|first1=Kazushi|last2=Aida|first2=Takuzo|date=2005-04-01|title=Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies|journal=Chemical Reviews|volume=105|issue=4|pages=1377–1400|doi=10.1021/cr030071r|pmid=15826015|issn=0009-2665}}</ref> Still other machines are responsible for [[gene expression]], including [[DNA polymerase]]s for replicating DNA, [[RNA polymerase]]s for producing [[Messenger RNA|mRNA]], the [[spliceosome]] for removing [[intron]]s, and the [[ribosome]] for [[Protein synthesis|synthesising proteins]]. These machines and their [[protein dynamics|nanoscale dynamics]] are far more complex than any molecular machines that have yet been artificially constructed.<ref name="pmid21570668">{{cite book |vauthors=Bu Z, Callaway DJ |chapter=Proteins MOVE! Protein dynamics and long-range allostery in cell signaling |volume=83 |pages=163–221 |year=2011 |pmid=21570668 |doi=10.1016/B978-0-12-381262-9.00005-7 |chapter-url=http://linkinghub.elsevier.com/retrieve/pii/B978-0-12-381262-9.00005-7 |series=Advances in Protein Chemistry and Structural Biology |isbn=9780123812629|title=Protein Structure and Diseases |publisher=Academic Press }}</ref>

[[File:Molecular Machines of Life.jpg|thumb|left|Some biological molecular machines]]

These biological machines might have applications in [[nanomedicine]]. For example,<ref>{{Cite journal | doi = 10.1002/ange.200905200| title = Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices| journal = Angewandte Chemie| volume = 122| issue = 2| pages = 322–326| year = 2010| last1 = Amrute-Nayak | first1 = M. | last2 = Diensthuber | first2 = R. P. | last3 = Steffen | first3 = W. | last4 = Kathmann | first4 = D. | last5 = Hartmann | first5 = F. K. | last6 = Fedorov | first6 = R. | last7 = Urbanke | first7 = C. | last8 = Manstein | first8 = D. J. | last9 = Brenner | first9 = B. | last10 = Tsiavaliaris | first10 = G. | pmid = 19921669| bibcode = 2010AngCh.122..322A}}</ref> they could be used to identify and destroy cancer cells.<ref name=patel>{{Cite journal | doi = 10.1080/10611860600612862| title = Nanorobot: A versatile tool in nanomedicine| journal = Journal of Drug Targeting| volume = 14| issue = 2| pages = 63–7| year = 2006| last1 = Patel | first1 = G. M. | last2 = Patel | first2 = G. C. | last3 = Patel | first3 = R. B. | last4 = Patel | first4 = J. K. | last5 = Patel | first5 = M. | pmid=16608733| s2cid = 25551052}}</ref><ref>{{Cite journal | doi = 10.1002/anie.201100115| title = Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media| journal = Angewandte Chemie International Edition| volume = 50| issue = 18| pages = 4161–4164| year = 2011| last1 = Balasubramanian | first1 = S. | last2 = Kagan | first2 = D. | last3 = Jack Hu | first3 = C. M. | last4 = Campuzano | first4 = S. | last5 = Lobo-Castañon | first5 = M. J. | last6 = Lim | first6 = N. | last7 = Kang | first7 = D. Y. | last8 = Zimmerman | first8 = M. | last9 = Zhang | first9 = L. | last10 = Wang | first10 = J. | pmid=21472835 | pmc=3119711}}</ref> [[Molecular nanotechnology]] is a [[Futures studies|speculative]] subfield of nanotechnology regarding the possibility of engineering [[molecular assembler]]s, biological machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these [[Nanorobotics|nanorobots]], introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.<ref>{{cite journal |journal=Journal of Computational and Theoretical Nanoscience |volume=2 |pages=471 |date=2005 |title=Current Status of Nanomedicine and Medical Nanorobotics |first1=Robert A. Jr. |last1=Freitas|doi=10.1166/jctn.2005.001 |first2=Ilkka |last2=Havukkala |url=http://www.nanomedicine.com/Papers/NMRevMar05.pdf |issue=4|bibcode=2005JCTN....2..471K }}</ref><ref name=nanofactory>[http://www.MolecularAssembler.com/Nanofactory Nanofactory Collaboration]</ref>

==Research==
The construction of more complex molecular machines is an active area of theoretical and experimental research. A number of molecules, such as molecular propellers, have been designed, although experimental studies of these molecules are inhibited by the lack of methods to construct these molecules.<ref>{{Cite journal|last1=Golestanian|first1=Ramin|last2=Liverpool|first2=Tanniemola B.|last3=Ajdari|first3=Armand|date=2005-06-10|title=Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products|journal=Physical Review Letters|volume=94|issue=22|pages=220801|doi=10.1103/PhysRevLett.94.220801|pmid=16090376|arxiv=cond-mat/0701169|bibcode=2005PhRvL..94v0801G|s2cid=18989399}}</ref> In this context, theoretical modeling can be extremely useful<ref>{{Cite journal|last=Drexler|first=K. Eric|date=1999-01-01|title=Building molecular machine systems|url=https://www.cell.com/trends/biotechnology/abstract/S0167-7799(98)01278-5|journal=Trends in Biotechnology|language=en|volume=17|issue=1|pages=5–7|doi=10.1016/S0167-7799(98)01278-5|issn=0167-7799}}</ref> to understand the self-assembly/disassembly processes of rotaxanes, important for the construction of light-powered molecular machines.<ref name=tabacchi2016>{{cite journal|author1=Tabacchi, G. |author2=Silvi, S. |author3=Venturi, M. |author4=Credi, A. |author5=Fois, E. |journal=ChemPhysChem |year=2016|doi=10.1002/cphc.201501160|pmid=26918775 |title=Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation |volume=17 |issue=12 |pages=1913–1919|hdl=11383/2057447 |s2cid=9660916 }}</ref> This molecular-level knowledge may foster the realization of ever more complex, versatile, and effective molecular machines for the areas of nanotechnology, including molecular assemblers.

Although currently not feasible, some potential applications of molecular machines are transport at the molecular level, manipulation of nanostructures and chemical systems, high density solid-state informational processing and molecular prosthetics.<ref>{{Cite journal|last1=Coskun|first1=Ali|last2=Banaszak|first2=Michal|author3-link=Raymond Dean Astumian|last3=Astumian|first3=R. Dean|last4=Stoddart|first4=J. Fraser|last5=Grzybowski|first5=Bartosz A.|date=2011-12-05|title=Great expectations: can artificial molecular machines deliver on their promise?|journal=Chem. Soc. Rev.|volume=41|issue=1|pages=19–30|doi=10.1039/c1cs15262a|pmid=22116531|issn=1460-4744}}</ref> Many fundamental challenges need to be overcome before molecular machines can be used practically such as autonomous operation, complexity of machines, stability in the synthesis of the machines and the working conditions.<ref name="Erbas-Cakmak 2015 10081–10206"/>

== References ==
{{Reflist}}

Revision as of 16:34, 15 January 2023

A molecular machine, nanite, or nanomachine[1] is a molecular component that produces quasi-mechanical movements (output) in response to specific stimuli (input).[2][3] In cellular biology, macromolecular machines frequently perform tasks essential for life, such as DNA replication and ATP synthesis. The expression is often more generally applied to molecules that simply mimic functions that occur at the macroscopic level. The term is also common in nanotechnology where a number of highly complex molecular machines have been proposed that are aimed at the goal of constructing a molecular assembler.[4][5]

Kinesin walking on a microtubule is a molecular biological machine using protein domain dynamics on nanoscales

For the last several decades, chemists and physicists alike have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world. Molecular machines are at the forefront of cellular biology research. The 2016 Nobel Prize in Chemistry was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa for the design and synthesis of molecular machines.[6][7]

Types

Molecular machines can be divided into two broad categories; artificial and biological. In general, artificial molecular machines (AMMs) refer to molecules that are artificially designed and synthesized whereas biological molecular machines can commonly be found in nature and have evolved into their forms after abiogenesis on Earth.[8]

Artificial

A wide variety of artificial molecular machines (AMMs) have been synthesized by chemists which are rather simple and small compared to biological molecular machines.[8] The first AMM, a molecular shuttle, was synthesized by Sir J. Fraser Stoddart.[9] A molecular shuttle is a rotaxane molecule where a ring is mechanically interlocked onto an axle with two bulky stoppers. The ring can move between two binding sites with various stimuli such as light, pH, solvents, and ions.[10] As the authors of this 1991 JACS paper noted: "Insofar as it becomes possible to control the movement of one molecular component with respect to the other in a [2]rotaxane, the technology for building molecular machines will emerge", mechanically interlocked molecular architectures spearheaded AMM design and synthesis as they provide directed molecular motion.[11] Today a wide variety of AMMs exists as listed below.

Overcrowded alkane molecular motor.

Molecular motors

Molecular motors are molecules that are capable of directional rotary motion around a single or double bond.[12][13][14][15] Single bond rotary motors[16] are generally activated by chemical reactions whereas double bond rotary motors[17] are generally fueled by light. The rotation speed of the motor can also be tuned by careful molecular design.[18] Carbon nanotube nanomotors have also been produced.[19]

Molecular propeller

A molecular propeller is a molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers.[20][21] It has several molecular-scale blades attached at a certain pitch angle around the circumference of a nanoscale shaft. Also see molecular gyroscope.

Daisy chain [2]rotaxane. These molecules are considered as building blocks for artificial muscle.

Molecular switch

A molecular switch is a molecule that can be reversibly shifted between two or more stable states.[22] The molecules may be shifted between the states in response to changes in pH, light (photoswitch), temperature, an electric current, microenvironment, or the presence of a ligand.[22][23][24]

Rotaxane based molecular shuttle.

Molecular shuttle

A molecular shuttle is a molecule capable of shuttling molecules or ions from one location to another.[25] A common molecular shuttle consists of a rotaxane where the macrocycle can move between two sites or stations along the dumbbell backbone.[25][9][26]

Nanocar

Nanocars are single molecule vehicles that resemble macroscopic automobiles and are important for understanding how to control molecular diffusion on surfaces. The first nanocars were synthesized by James M. Tour in 2005. They had an H shaped chassis and 4 molecular wheels (fullerenes) attached to the four corners.[27] In 2011, Ben Feringa and co-workers synthesized the first motorized nanocar which had molecular motors attached to the chassis as rotating wheels.[28] The authors were able to demonstrate directional motion of the nanocar on a copper surface by providing energy from a scanning tunneling microscope tip. Later, in 2017, the world's first ever Nanocar Race took place in Toulouse.

Molecular balance

A molecular balance[29][30] is a molecule that can interconvert between two and more conformational or configurational states in response to the dynamic of multiple intra- and intermolecular driving forces, such as hydrogen bonding, solvophobic/hydrophobic effects,[31] π interactions,[32] and steric and dispersion interactions.[33] Molecular balances can be small molecules or macromolecules such as proteins. Cooperatively folded proteins, for example, have been used as molecular balances to measure interaction energies and conformational propensities.[34]

Molecular tweezers

Molecular tweezers are host molecules capable of holding items between their two arms.[35] The open cavity of the molecular tweezers binds items using non-covalent bonding including hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π interactions, or electrostatic effects.[36] Examples of molecular tweezers have been reported that are constructed from DNA and are considered DNA machines.[37]

Molecular sensor

A molecular sensor is a molecule that interacts with an analyte to produce a detectable change.[38][39] Molecular sensors combine molecular recognition with some form of reporter, so the presence of the item can be observed.

Molecular logic gate

A molecular logic gate is a molecule that performs a logical operation on one or more logic inputs and produces a single logic output.[40][41] Unlike a molecular sensor, the molecular logic gate will only output when a particular combination of inputs are present.

Molecular assembler

A molecular assembler is a molecular machine able to guide chemical reactions by positioning reactive molecules with precision.[42][43][44][45][46]

Molecular hinge

A molecular hinge is a molecule that can be selectively switched from one configuration to another in a reversible fashion.[47] Such configurations must have distinguishable geometries; for instance, azobenzene groups in a linear molecule may undergo cis-trans isomerizations[48] when irradiated with ultraviolet light, triggering a reversible transition to a bent or V-shaped conformation.[49][50][51][52] Molecular hinges typically rotate in a crank-like motion around a rigid axis, such as a double bond or aromatic ring.[53] However, macrocyclic molecular hinges with more clamp-like mechanisms have also been synthesized.[54][55][56]

Biological

A ribosome performing the elongation and membrane targeting stages of protein translation. The ribosome is green and yellow, the tRNAs are dark blue, and the other proteins involved are light blue. The produced peptide is released into the endoplasmic reticulum.

The most complex macromolecular machines are found within cells, often in the form of multi-protein complexes.[57] Important examples of biological machines include motor proteins such as myosin, which is responsible for muscle contraction, kinesin, which moves cargo inside cells away from the nucleus along microtubules, and dynein, which moves cargo inside cells towards the nucleus and produces the axonemal beating of motile cilia and flagella. "[I]n effect, the [motile cilium] is a nanomachine composed of perhaps over 600 proteins in molecular complexes, many of which also function independently as nanomachines ... Flexible linkers allow the mobile protein domains connected by them to recruit their binding partners and induce long-range allostery via protein domain dynamics."[1] Other biological machines are responsible for energy production, for example ATP synthase which harnesses energy from proton gradients across membranes to drive a turbine-like motion used to synthesise ATP, the energy currency of a cell.[58] Still other machines are responsible for gene expression, including DNA polymerases for replicating DNA, RNA polymerases for producing mRNA, the spliceosome for removing introns, and the ribosome for synthesising proteins. These machines and their nanoscale dynamics are far more complex than any molecular machines that have yet been artificially constructed.[59]

Some biological molecular machines

These biological machines might have applications in nanomedicine. For example,[60] they could be used to identify and destroy cancer cells.[61][62] Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, biological machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[63][64]

Research

The construction of more complex molecular machines is an active area of theoretical and experimental research. A number of molecules, such as molecular propellers, have been designed, although experimental studies of these molecules are inhibited by the lack of methods to construct these molecules.[65] In this context, theoretical modeling can be extremely useful[66] to understand the self-assembly/disassembly processes of rotaxanes, important for the construction of light-powered molecular machines.[67] This molecular-level knowledge may foster the realization of ever more complex, versatile, and effective molecular machines for the areas of nanotechnology, including molecular assemblers.

Although currently not feasible, some potential applications of molecular machines are transport at the molecular level, manipulation of nanostructures and chemical systems, high density solid-state informational processing and molecular prosthetics.[68] Many fundamental challenges need to be overcome before molecular machines can be used practically such as autonomous operation, complexity of machines, stability in the synthesis of the machines and the working conditions.[8]

References

  1. ^ a b Satir, Peter; Søren T. Christensen (2008-03-26). "Structure and function of mammalian cilia". Histochemistry and Cell Biology. 129 (6): 687–93. doi:10.1007/s00418-008-0416-9. PMC 2386530. PMID 18365235. 1432-119X.
  2. ^ Ballardini R, Balzani V, Credi A, Gandolfi MT, Venturi M (2001). "Artificial Molecular-Level Machines: Which Energy To Make Them Work?". Acc. Chem. Res. 34 (6): 445–455. doi:10.1021/ar000170g. PMID 11412081.
  3. ^ Aprahamian I (March 2020). "The Future of Molecular Machines". ACS Central Science. 6 (3): 347–358. doi:10.1021/acscentsci.0c00064. PMC 7099591. PMID 32232135.
  4. ^ Drexler, K. E. (July 1991). "Molecular directions in nanotechnology". Nanotechnology. 2 (3): 113–118. Bibcode:1991Nanot...2..113D. doi:10.1088/0957-4484/2/3/002. ISSN 0957-4484. S2CID 250739962.
  5. ^ Johnson, Dexter (June 11, 2007). "Revolutionary Nanotechnology: Wet or Dry?". IEEE Spectrum.
  6. ^ Staff (5 October 2016). "The Nobel Prize in Chemistry 2016". Nobel Foundation. Retrieved 5 October 2016.
  7. ^ Chang, Kenneth; Chan, Sewell (5 October 2016). "3 Makers of 'World's Smallest Machines' Awarded Nobel Prize in Chemistry". New York Times. Retrieved 5 October 2016.
  8. ^ a b c Erbas-Cakmak, Sundus; Leigh, David A.; McTernan, Charlie T.; Nussbaumer, Alina L. (2015). "Artificial Molecular Machines". Chemical Reviews. 115 (18): 10081–10206. doi:10.1021/acs.chemrev.5b00146. PMC 4585175. PMID 26346838.
  9. ^ a b Anelli, Pier Lucio; Spencer, Neil; Stoddart, J. Fraser (June 1991). "A molecular shuttle". Journal of the American Chemical Society. 113 (13): 5131–5133. doi:10.1021/ja00013a096. PMID 27715028.
  10. ^ Bruns, Carson J.; Stoddart, J. Fraser (30 May 2014). "Rotaxane-Based Molecular Muscles". Accounts of Chemical Research. 47 (7): 2186–2199. doi:10.1021/ar500138u. PMID 24877992.
  11. ^ Kay, Euan R.; Leigh, David A. (24 August 2015). "Rise of the Molecular Machines". Angewandte Chemie International Edition. 54 (35): 10080–10088. doi:10.1002/anie.201503375. PMC 4557038. PMID 26219251.
  12. ^ Fletcher, Stephen P.; Dumur, Frédéric; Pollard, Michael M.; Feringa, Ben L. (2005-10-07). "A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy". Science. 310 (5745): 80–82. Bibcode:2005Sci...310...80F. doi:10.1126/science.1117090. hdl:11370/50a4c59b-e2fd-413b-a58f-bd37494432e9. ISSN 0036-8075. PMID 16210531. S2CID 28174183.
  13. ^ Perera, U. G. E.; Ample, F.; Kersell, H.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C. (January 2013). "Controlled clockwise and anticlockwise rotational switching of a molecular motor". Nature Nanotechnology. 8 (1): 46–51. Bibcode:2013NatNa...8...46P. doi:10.1038/nnano.2012.218. ISSN 1748-3395. PMID 23263725.
  14. ^ Schliwa, Manfred; Woehlke, Günther (2003-04-17). "Molecular motors". Nature. 422 (6933): 759–765. Bibcode:2003Natur.422..759S. doi:10.1038/nature01601. PMID 12700770. S2CID 4418203.
  15. ^ van Delden, Richard A.; Wiel, Matthijs K. J. ter; Pollard, Michael M.; Vicario, Javier; Koumura, Nagatoshi; Feringa, Ben L. (October 2005). "Unidirectional molecular motor on a gold surface" (PDF). Nature. 437 (7063): 1337–1340. Bibcode:2005Natur.437.1337V. doi:10.1038/nature04127. ISSN 1476-4687. PMID 16251960. S2CID 4416787.
  16. ^ Kelly, T. Ross; De Silva, Harshani; Silva, Richard A. (9 September 1999). "Unidirectional rotary motion in a molecular system". Nature. 401 (6749): 150–152. Bibcode:1999Natur.401..150K. doi:10.1038/43639. PMID 10490021. S2CID 4351615.
  17. ^ Koumura, Nagatoshi; Zijlstra, Robert W. J.; van Delden, Richard A.; Harada, Nobuyuki; Feringa, Ben L. (9 September 1999). "Light-driven monodirectional molecular rotor" (PDF). Nature. 401 (6749): 152–155. Bibcode:1999Natur.401..152K. doi:10.1038/43646. hdl:11370/d8399fe7-11be-4282-8cd0-7c0adf42c96f. PMID 10490022. S2CID 4412610.
  18. ^ Vicario, Javier; Meetsma, Auke; Feringa, Ben L. (2005). "Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification". Chemical Communications. 116 (47): 5910–2. doi:10.1039/B507264F. PMID 16317472.
  19. ^ Fennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A. (24 July 2003). "Rotational actuators based on carbon nanotubes". Nature. 424 (6947): 408–410. Bibcode:2003Natur.424..408F. doi:10.1038/nature01823. PMID 12879064. S2CID 2200106.
  20. ^ Simpson, Christopher D.; Mattersteig, Gunter; Martin, Kai; Gherghel, Lileta; Bauer, Roland E.; Räder, Hans Joachim; Müllen, Klaus (March 2004). "Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers". Journal of the American Chemical Society. 126 (10): 3139–3147. doi:10.1021/ja036732j. PMID 15012144.
  21. ^ Wang, Boyang; Král, Petr (2007). "Chemically Tunable Nanoscale Propellers of Liquids". Physical Review Letters. 98 (26): 266102. Bibcode:2007PhRvL..98z6102W. doi:10.1103/PhysRevLett.98.266102. PMID 17678108.
  22. ^ a b Feringa, Ben L.; van Delden, Richard A.; Koumura, Nagatoshi; Geertsema, Edzard M. (May 2000). "Chiroptical Molecular Switches" (PDF). Chemical Reviews. 100 (5): 1789–1816. doi:10.1021/cr9900228. PMID 11777421. S2CID 11740379.
  23. ^ Knipe, Peter C.; Thompson, Sam; Hamilton, Andrew D. (2015). "Ion-mediated conformational switches". Chemical Science. 6 (3): 1630–1639. doi:10.1039/C4SC03525A. PMC 5482205. PMID 28694943.
  24. ^ Kazem-Rostami, Masoud; Moghanian, Amirhossein (2017). "Hünlich base derivatives as photo-responsive Λ-shaped hinges". Organic Chemistry Frontiers. 4 (2): 224–228. doi:10.1039/C6QO00653A.
  25. ^ a b Bissell, Richard A; Córdova, Emilio; Kaifer, Angel E.; Stoddart, J. Fraser (12 May 1994). "A chemically and electrochemically switchable molecular shuttle". Nature. 369 (6476): 133–137. Bibcode:1994Natur.369..133B. doi:10.1038/369133a0. S2CID 44926804.
  26. ^ Chatterjee, Manashi N.; Kay, Euan R.; Leigh, David A. (2006-03-01). "Beyond Switches: Ratcheting a Particle Energetically Uphill with a Compartmentalized Molecular Machine". Journal of the American Chemical Society. 128 (12): 4058–4073. doi:10.1021/ja057664z. ISSN 0002-7863. PMID 16551115.
  27. ^ Shirai, Yasuhiro; Osgood, Andrew J.; Zhao, Yuming; Kelly, Kevin F.; Tour, James M. (November 2005). "Directional Control in Thermally Driven Single-Molecule Nanocars". Nano Letters. 5 (11): 2330–2334. Bibcode:2005NanoL...5.2330S. doi:10.1021/nl051915k. PMID 16277478.
  28. ^ Kudernac, Tibor; Ruangsupapichat, Nopporn; Parschau, Manfred; Maciá, Beatriz; Katsonis, Nathalie; Harutyunyan, Syuzanna R.; Ernst, Karl-Heinz; Feringa, Ben L. (10 November 2011). "Electrically driven directional motion of a four-wheeled molecule on a metal surface". Nature. 479 (7372): 208–211. Bibcode:2011Natur.479..208K. doi:10.1038/nature10587. PMID 22071765. S2CID 6175720.
  29. ^ Paliwal, S.; Geib, S.; Wilcox, C. S. (1994-05-01). "Molecular Torsion Balance for Weak Molecular Recognition Forces. Effects of "Tilted-T" Edge-to-Face Aromatic Interactions on Conformational Selection and Solid-State Structure". Journal of the American Chemical Society. 116 (10): 4497–4498. doi:10.1021/ja00089a057. ISSN 0002-7863.
  30. ^ Mati, Ioulia K.; Cockroft, Scott L. (2010-10-19). "Molecular balances for quantifying non-covalent interactions" (PDF). Chemical Society Reviews. 39 (11): 4195–205. doi:10.1039/B822665M. hdl:20.500.11820/7ce18ff7-1196-48a1-8c67-3bc3f6b46946. ISSN 1460-4744. PMID 20844782. S2CID 263667.
  31. ^ Yang, Lixu; Adam, Catherine; Cockroft, Scott L. (2015-08-19). "Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions". Journal of the American Chemical Society. 137 (32): 10084–10087. doi:10.1021/jacs.5b05736. hdl:20.500.11820/604343eb-04aa-4d90-82d2-0998898400d2. ISSN 0002-7863. PMID 26159869.
  32. ^ Li, Ping; Zhao, Chen; Smith, Mark D.; Shimizu, Ken D. (2013-06-07). "Comprehensive Experimental Study of N-Heterocyclic π-Stacking Interactions of Neutral and Cationic Pyridines". The Journal of Organic Chemistry. 78 (11): 5303–5313. doi:10.1021/jo400370e. ISSN 0022-3263. PMID 23675885.
  33. ^ Hwang, Jungwun; Li, Ping; Smith, Mark D.; Shimizu, Ken D. (2016-07-04). "Distance-Dependent Attractive and Repulsive Interactions of Bulky Alkyl Groups". Angewandte Chemie International Edition. 55 (28): 8086–8089. doi:10.1002/anie.201602752. ISSN 1521-3773. PMID 27159670.
  34. ^ Ardejani, Maziar S.; Powers, Evan T.; Kelly, Jeffery W. (2017-08-15). "Using Cooperatively Folded Peptides To Measure Interaction Energies and Conformational Propensities". Accounts of Chemical Research. 50 (8): 1875–1882. doi:10.1021/acs.accounts.7b00195. ISSN 0001-4842. PMC 5584629. PMID 28723063.
  35. ^ Chen, C. W.; Whitlock, H. W. (July 1978). "Molecular tweezers: a simple model of bifunctional intercalation". Journal of the American Chemical Society. 100 (15): 4921–4922. doi:10.1021/ja00483a063.
  36. ^ Klärner, Frank-Gerrit; Kahlert, Björn (December 2003). "Molecular Tweezers and Clips as Synthetic Receptors. Molecular Recognition and Dynamics in Receptor−Substrate Complexes". Accounts of Chemical Research. 36 (12): 919–932. doi:10.1021/ar0200448. PMID 14674783.
  37. ^ Yurke, Bernard; Turberfield, Andrew J.; Mills, Allen P.; Simmel, Friedrich C.; Neumann, Jennifer L. (10 August 2000). "A DNA-fuelled molecular machine made of DNA". Nature. 406 (6796): 605–608. Bibcode:2000Natur.406..605Y. doi:10.1038/35020524. PMID 10949296. S2CID 2064216.
  38. ^ Cavalcanti A, Shirinzadeh B, Freitas Jr RA, Hogg T (2008). "Nanorobot architecture for medical target identification". Nanotechnology. 19 (1): 015103(15pp). Bibcode:2008Nanot..19a5103C. doi:10.1088/0957-4484/19/01/015103. S2CID 15557853.
  39. ^ Wu, Di; Sedgwick, Adam C.; Gunnlaugsson, Thorfinnur; Akkaya, Engin U.; Yoon, Juyoung; James, Tony D. (2017). "Fluorescent chemosensors: the past, present and future". Chemical Society Reviews. 46 (23): 7105–7123. doi:10.1039/C7CS00240H. hdl:11693/38177. PMID 29019488.
  40. ^ Prasanna de Silva, A.; McClenaghan, Nathan D. (April 2000). "Proof-of-Principle of Molecular-Scale Arithmetic". Journal of the American Chemical Society. 122 (16): 3965–3966. doi:10.1021/ja994080m.
  41. ^ Magri, David C.; Brown, Gareth J.; McClean, Gareth D.; de Silva, A. Prasanna (April 2006). "Communicating Chemical Congregation: A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype". Journal of the American Chemical Society. 128 (15): 4950–4951. doi:10.1021/ja058295+. PMID 16608318.
  42. ^ Lewandowski, Bartosz; De Bo, Guillaume; Ward, John W.; Papmeyer, Marcus; Kuschel, Sonja; Aldegunde, María J.; Gramlich, Philipp M. E.; Heckmann, Dominik; Goldup, Stephen M. (2013-01-11). "Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine". Science. 339 (6116): 189–193. Bibcode:2013Sci...339..189L. doi:10.1126/science.1229753. ISSN 0036-8075. PMID 23307739. S2CID 206544961.
  43. ^ De Bo, Guillaume; Kuschel, Sonja; Leigh, David A.; Lewandowski, Bartosz; Papmeyer, Marcus; Ward, John W. (2014-04-16). "Efficient Assembly of Threaded Molecular Machines for Sequence-Specific Synthesis". Journal of the American Chemical Society. 136 (15): 5811–5814. doi:10.1021/ja5022415. ISSN 0002-7863. PMID 24678971.
  44. ^ De Bo, Guillaume; Gall, Malcolm A. Y.; Kitching, Matthew O.; Kuschel, Sonja; Leigh, David A.; Tetlow, Daniel J.; Ward, John W. (2017-08-09). "Sequence-Specific β-Peptide Synthesis by a Rotaxane-Based Molecular Machine" (PDF). Journal of the American Chemical Society. 139 (31): 10875–10879. doi:10.1021/jacs.7b05850. ISSN 0002-7863. PMID 28723130.
  45. ^ Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Marcos, Vanesa; Palmer, Leoni I.; Pisano, Simone (September 2017). "Stereodivergent synthesis with a programmable molecular machine". Nature. 549 (7672): 374–378. Bibcode:2017Natur.549..374K. doi:10.1038/nature23677. ISSN 1476-4687. PMID 28933436. S2CID 205259758.
  46. ^ De Bo, Guillaume; Gall, Malcolm A. Y.; Kuschel, Sonja; Winter, Julien De; Gerbaux, Pascal; Leigh, David A. (2018-04-02). "An artificial molecular machine that builds an asymmetric catalyst". Nature Nanotechnology. 13 (5): 381–385. Bibcode:2018NatNa..13..381D. doi:10.1038/s41565-018-0105-3. ISSN 1748-3395. PMID 29610529. S2CID 4624041.
  47. ^ Kay, Euan R.; Leigh, David A.; Zerbetto, Francesco (January 2007). "Synthetic Molecular Motors and Mechanical Machines". Angewandte Chemie International Edition. 46 (1–2): 72–191. doi:10.1002/anie.200504313. PMID 17133632.
  48. ^ Bandara, H. M. Dhammika; Burdette, Shawn C. (2012). "Photoisomerization in different classes of azobenzene". Chem. Soc. Rev. 41 (5): 1809–1825. doi:10.1039/c1cs15179g. PMID 22008710.
  49. ^ Wang, Jing; Jiang, Qian; Hao, Xingtian; Yan, Hongchao; Peng, Haiyan; Xiong, Bijin; Liao, Yonggui; Xie, Xiaolin (2020). "Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer". RSC Advances. 10 (7): 3726–3733. Bibcode:2020RSCAd..10.3726W. doi:10.1039/C9RA10161F.
  50. ^ Hada, Masaki; Yamaguchi, Daisuke; Ishikawa, Tadahiko; Sawa, Takayoshi; Tsuruta, Kenji; Ishikawa, Ken; Koshihara, Shin-ya; Hayashi, Yasuhiko; Kato, Takashi (13 September 2019). "Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules". Nature Communications. 10 (1): 4159. Bibcode:2019NatCo..10.4159H. doi:10.1038/s41467-019-12116-6. ISSN 2041-1723. PMC 6744564. PMID 31519876.
  51. ^ Garcia-Amorós, Jaume; Reig, Marta; Cuadrado, Alba; Ortega, Mario; Nonell, Santi; Velasco, Dolores (2014). "A photoswitchable bis-azo derivative with a high temporal resolution". Chem. Commun. 50 (78): 11462–11464. doi:10.1039/C4CC05331A. PMID 25132052.
  52. ^ Kazem-Rostami, Masoud (2017). "Design and synthesis of Ʌ-shaped photoswitchable compounds employing Tröger's base scaffold". Synthesis. 49 (6): 1214–1222. doi:10.1055/s-0036-1588913.
  53. ^ Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A. (2017). "Artificial molecular motors" (PDF). Chemical Society Reviews. 46 (9): 2592–2621. doi:10.1039/C7CS00245A. PMID 28426052.
  54. ^ Jones, Christopher D.; Kershaw Cook, Laurence J.; Marquez-Gamez, David; Luzyanin, Konstantin V.; Steed, Jonathan W.; Slater, Anna G. (7 May 2021). "High-Yielding Flow Synthesis of a Macrocyclic Molecular Hinge". Journal of the American Chemical Society. 143 (19): 7553–7565. doi:10.1021/jacs.1c02891. ISSN 0002-7863. PMC 8397308. PMID 33961419.
  55. ^ Despras, Guillaume; Hain, Julia; Jaeschke, Sven Ole (10 August 2017). "Photocontrol over Molecular Shape: Synthesis and Photochemical Evaluation of Glycoazobenzene Macrocycles". Chemistry - A European Journal. 23 (45): 10838–10847. doi:10.1002/chem.201701232. PMID 28613430.
  56. ^ Nagamani, S. Anitha; Norikane, Yasuo; Tamaoki, Nobuyuki (November 2005). "Photoinduced Hinge-Like Molecular Motion: Studies on Xanthene-Based Cyclic Azobenzene Dimers". The Journal of Organic Chemistry. 70 (23): 9304–9313. doi:10.1021/jo0513616. PMID 16268603.
  57. ^ Donald, Voet (2011). Biochemistry. Voet, Judith G. (4th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 9780470570951. OCLC 690489261.
  58. ^ Kinbara, Kazushi; Aida, Takuzo (2005-04-01). "Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies". Chemical Reviews. 105 (4): 1377–1400. doi:10.1021/cr030071r. ISSN 0009-2665. PMID 15826015.
  59. ^ Bu Z, Callaway DJ (2011). "Proteins MOVE! Protein dynamics and long-range allostery in cell signaling". Protein Structure and Diseases. Advances in Protein Chemistry and Structural Biology. Vol. 83. Academic Press. pp. 163–221. doi:10.1016/B978-0-12-381262-9.00005-7. ISBN 9780123812629. PMID 21570668.
  60. ^ Amrute-Nayak, M.; Diensthuber, R. P.; Steffen, W.; Kathmann, D.; Hartmann, F. K.; Fedorov, R.; Urbanke, C.; Manstein, D. J.; Brenner, B.; Tsiavaliaris, G. (2010). "Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices". Angewandte Chemie. 122 (2): 322–326. Bibcode:2010AngCh.122..322A. doi:10.1002/ange.200905200. PMID 19921669.
  61. ^ Patel, G. M.; Patel, G. C.; Patel, R. B.; Patel, J. K.; Patel, M. (2006). "Nanorobot: A versatile tool in nanomedicine". Journal of Drug Targeting. 14 (2): 63–7. doi:10.1080/10611860600612862. PMID 16608733. S2CID 25551052.
  62. ^ Balasubramanian, S.; Kagan, D.; Jack Hu, C. M.; Campuzano, S.; Lobo-Castañon, M. J.; Lim, N.; Kang, D. Y.; Zimmerman, M.; Zhang, L.; Wang, J. (2011). "Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media". Angewandte Chemie International Edition. 50 (18): 4161–4164. doi:10.1002/anie.201100115. PMC 3119711. PMID 21472835.
  63. ^ Freitas, Robert A. Jr.; Havukkala, Ilkka (2005). "Current Status of Nanomedicine and Medical Nanorobotics" (PDF). Journal of Computational and Theoretical Nanoscience. 2 (4): 471. Bibcode:2005JCTN....2..471K. doi:10.1166/jctn.2005.001.
  64. ^ Nanofactory Collaboration
  65. ^ Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand (2005-06-10). "Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products". Physical Review Letters. 94 (22): 220801. arXiv:cond-mat/0701169. Bibcode:2005PhRvL..94v0801G. doi:10.1103/PhysRevLett.94.220801. PMID 16090376. S2CID 18989399.
  66. ^ Drexler, K. Eric (1999-01-01). "Building molecular machine systems". Trends in Biotechnology. 17 (1): 5–7. doi:10.1016/S0167-7799(98)01278-5. ISSN 0167-7799.
  67. ^ Tabacchi, G.; Silvi, S.; Venturi, M.; Credi, A.; Fois, E. (2016). "Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation". ChemPhysChem. 17 (12): 1913–1919. doi:10.1002/cphc.201501160. hdl:11383/2057447. PMID 26918775. S2CID 9660916.
  68. ^ Coskun, Ali; Banaszak, Michal; Astumian, R. Dean; Stoddart, J. Fraser; Grzybowski, Bartosz A. (2011-12-05). "Great expectations: can artificial molecular machines deliver on their promise?". Chem. Soc. Rev. 41 (1): 19–30. doi:10.1039/c1cs15262a. ISSN 1460-4744. PMID 22116531.