Silicalite

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 06:42, 18 January 2021 (Alter: pages. Add: journal, s2cid, bibcode, issue. Formatted dashes. Upgrade ISBN10 to ISBN13. | You can use this bot yourself. Report bugs here. | Suggested by Graeme Bartlett | via #UCB_toolbar). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Silicalite
Identifiers
Properties
O2Si
Molar mass 60.083 g·mol−1
Appearance white solid
Density 1.76 g/cm3
Melting point 1,300 °C (2,370 °F; 1,570 K) decomposition
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Silicalite is an inorganic compound with the formula SiO2. It is one of several forms (polymorphs) of silicon dioxide. It is a white solid. It consists of tetrahedral silicon centers and two-coordinate oxides. It is prepared by hydrothermal reaction using tetrapropylammonium hydroxide followed by calcining to remove residual ammonium salts. The compound is notable in being ca. 33% porous. It is useful because the material contains (SiO)10 rings that allow sorption of hydrophobic molecules of diameter 0.6 nm.[1]

A commercially important modification of silicalite is titanium silicalite. With the formula Si1-xTixO2, it consists of silicalite with Ti doped into some Si sites. Unlike conventional polymorphs of titanium dioxide, the Ti centers in titanium silicalite have tetrahedral coordination geometry. The material is a useful catalyst for the reaction of hydrogen peroxide with propylene to give propylene oxide.[2]

References

  1. ^ "Silicalite, a New Hydrophobic Crystalline Silica Molecular Sieve". Nature. 271 (5645): 512–516. 1978. Bibcode:1978Natur.271..512F. doi:10.1038/271512a0. S2CID 4266556. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  2. ^ Georgi N. Vayssilov (1997). "Structural and Physicochemical Features of Titanium Silicalites". Catalysis Reviews. 39 (3): 209–251. doi:10.1080/01614949709353777.