Jump to content

Vorticella convallaria

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Plantdrew (talk | contribs) at 02:40, 11 November 2021 (switch taxobox to speciesbox). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Vorticella convallaria
Scientific classification Edit this classification
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Ciliophora
Class: Oligohymenophorea
Order: Sessilida
Family: Vorticellidae
Genus: Vorticella
Species:
V. convallaria
Binomial name
Vorticella convallaria
(Linnaeus, 1758)

Vorticella convallaria is a species of ciliates. It is the type species of the genus Vorticella. It resembles V. campanula, but differs in being somewhat narrow in the anterior end and usually having no refractile granules in the endoplasm.

Vorticella convallaria exhibits two morphological types. The primary type is the sessile trophont stalked zooid. When environmental conditions deteriorate the stalked zooid excises its stalk and transforms into Vorticella's secondary type, the motile dispersive telotroch. When the telotroch finds suitable environs it reattaches to the substrate and transforms back into a stalked zooid.

The cell body of this species is 50-95 μm long and 35-53 μm wide. The peristome ranges from 55-75 μm in diameter. The rod-like, contractile stalk - the "spasmoneme" - is 25-300 μm long and 4 μm wide. It can collapse into a tightly coiled helix in less than 1/60th of a second.[1] The contraction occurs when the negatively charged "spasmin" proteins that make up the spasmoneme are neutralized by binding with calcium, causing the stalk to collapse.[2]

References

  1. ^ Bras, R., A. Upadhyaya, A. van Oudenaarden & C. Ortiz 2002. Imaging of the World's Fastest Biological Spring Vorticella convallaria Via Atomic Force Microscopy. American Physical Society, Annual APS March Meeting, March 18–22, 2002 Indiana Convention Center, Indianapolis, Indiana. Meeting ID: MAR02, abstract #M33.107
  2. ^ Upadhyaya Lab, Measuring the contraction of a biological spring

Further reading