Jump to content

Plumbene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by MrOllie (talk | contribs) at 20:05, 1 October 2023 (rm COI / citespam). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Plumbene is a material made up of a single layer of lead atoms.[1][2][3] The material is created in a process similar to that of graphene, silicene, germanene, and stanene, in which high vacuum and high temperature are used to deposit a layer of lead atoms on a substrate. High-quality thin films of plumbene have revealed two-dimensional honeycomb structures. First researched by Indian scientists, further investigations are being done around the world.

Preparation and structure

In April 2019, J. Yuhara and others reported the deposition of a single atom thickness by molecular beam epitaxy with a segregation method upon a palladium surface in a crystal lattice with Miller indices (111). The structure was confirmed with scanning tunneling microscopy (STM) revealing a nearly flat honeycomb structure.[4] There is no evidence of any three-dimensional islands, but one notices a unique nanostructured tessellation all over the terraces looking like a space-filling polyhedral foam reduced to dimension 2.

Properties

Plumbene's electronic and optical properties have been determined from ab initio calculations, indicating a band gap of 0.4 eV [5][1]

References

  1. ^ a b Das, Dhiman Kumar; Sarkar, Jit; Singh, S. K. (2018-08-01). "Effect of sample size, temperature and strain velocity on mechanical properties of plumbene by tensile loading along longitudinal direction: A molecular dynamics study". Computational Materials Science. 151: 196–203. doi:10.1016/j.commatsci.2018.05.006. S2CID 139217230.
  2. ^ Wang, Pei-ji; Ping Li; Zhang, Bao-min; Yan, Shi-shen; Sheng-shi Li; Zhang, Run-wu; Ji, Wei-xiao; Yan, Shi-shen; Zhang, Chang-wen (2016-02-02). "Unexpected Giant-Gap Quantum Spin Hall Insulator in Chemically Decorated Plumbene Monolayer". Scientific Reports. 6. Nature: 20152. Bibcode:2016NatSR...620152Z. doi:10.1038/srep20152. PMC 4735859. PMID 26833133.
  3. ^ Zhang, Liang; Zhao, Hui; Ji, Wei-xiao; Zhang, Chang-wen; Li, Ping; Wang, Pei-ji (2018). "Discovery of a new quantum spin Hall phase in bilayer plumbene". Chemical Physics Letters. 712: 78–82. Bibcode:2018CPL...712...78Z. doi:10.1016/j.cplett.2018.09.016. ISSN 0009-2614. S2CID 105573942.
  4. ^ Yuhara, J.; He, B.; Le Lay, G. (2019). "Graphene's Latest Cousin: Plumbene Epitaxial Growth on a "Nano WaterCube"". Advanced Materials. 31 (27): 1901017. Bibcode:2019AdM....3101017Y. doi:10.1002/adma.201901017. PMID 31074927. S2CID 149446617.
  5. ^ Yu, X.-L.; Huang, L.; Wu, J. (2017), "From a normal insulator to a topological insulator in plumbene", Physical Review B, 95 (12): 125113, arXiv:1702.07447, Bibcode:2017PhRvB..95l5113Y, doi:10.1103/PhysRevB.95.125113, S2CID 119076198