Jump to content

Path graph

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by InternetArchiveBot (talk | contribs) at 12:40, 18 December 2019 (Bluelinking 1 books for verifiability.) #IABot (v2.1alpha3). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Path graph
A path graph on 6 vertices
Verticesn
Edgesn − 1
Radiusn / 2⌋
Diametern − 1
Automorphisms2
Chromatic number2
Chromatic index2
Spectrum{2 cos(k π / (n + 1)); k = 1, ..., n}
PropertiesUnit distance
Bipartite graph
Tree
Notation
Table of graphs and parameters

In the mathematical field of graph theory, a path graph or linear graph is a graph whose vertices can be listed in the order v1, v2, …, vn such that the edges are {vi, vi+1} where i = 1, 2, …, n − 1. Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2.

Paths are often important in their role as subgraphs of other graphs, in which case they are called paths in that graph. A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest.

Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See, for example, Bondy and Murty (1976), Gibbons (1985), or Diestel (2005).

As Dynkin diagrams

In algebra, path graphs appear as the Dynkin diagrams of type A. As such, they classify the root system of type A and the Weyl group of type A, which is the symmetric group.

See also

References

  • Bondy, J. A.; Murty, U. S. R. (1976). Graph Theory with Applications. North Holland. pp. 12–21. ISBN 0-444-19451-7.{{cite book}}: CS1 maint: url-status (link)
  • Diestel, Reinhard (2005). Graph Theory (3rd ed.). Graduate Texts in Mathematics, vol. 173, Springer-Verlag. pp. 6–9. ISBN 3-540-26182-6.