Jump to content

Lah number

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by InternetArchiveBot (talk | contribs) at 08:54, 17 March 2020 (Bluelink 1 book for verifiability (goog)) #IABot (v2.0) (GreenC bot). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Illustration of the unsigned Lah numbers for n and k between 1 and 4

In mathematics, the Lah numbers, discovered by Ivo Lah in 1954,[1][2] are coefficients expressing rising factorials in terms of falling factorials. They are also the coefficients of the th derivatives of .[3]

Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets.[4] Lah numbers are related to Stirling numbers.[5]

Unsigned Lah numbers (sequence A105278 in the OEIS):

Signed Lah numbers (sequence A008297 in the OEIS):

L(n, 1) is always n!; in the interpretation above, the only partition of {1, 2, 3} into 1 set can have its set ordered in 6 ways:

{(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)} or {(3, 2, 1)}

L(3, 2) corresponds to the 6 partitions with two ordered parts:

{(1), (2, 3)}, {(1), (3, 2)}, {(2), (1, 3)}, {(2), (3, 1)}, {(3), (1, 2)} or {(3), (2, 1)}

L(n, n) is always 1 since, e.g., partitioning {1, 2, 3} into 3 non-empty subsets results in subsets of length 1.

{(1), (2), (3)}

Adapting the Karamata–Knuth notation for Stirling numbers, it has been proposed to use the following alternative notation for Lah numbers:

Rising and falling factorials

Let represent the rising factorial and let represent the falling factorial .

Then and

For example,

Compare the third row of the table of values.

Identities and relations

where , for all , and
where are the Stirling numbers of the first kind and are the Stirling numbers of the second kind, , and for all .

Table of values

Below is a table of values for the Lah numbers:

 k
n 
1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 2 1
3 6 6 1
4 24 36 12 1
5 120 240 120 20 1
6 720 1800 1200 300 30 1
7 5040 15120 12600 4200 630 42 1
8 40320 141120 141120 58800 11760 1176 56 1
9 362880 1451520 1693440 846720 211680 28224 2016 72 1
10 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1
11 39916800 199584000 299376000 199584000 69854400 13970880 1663200 11880 4950 110 1
12 479001600 2634508800 4390848000 3293136000 1317254400 307359360 43908480 3920400 217800 7260 132 1

See also

References

  1. ^ Template:Cite article
  2. ^ John Riordan, Introduction to Combinatorial Analysis, Princeton University Press (1958, reissue 1980) ISBN 978-0-691-02365-6 (reprinted again in 2002 by Dover Publications).
  3. ^ Template:Cite article
  4. ^ Template:Cite article
  5. ^ Comtet, Louis (1974). Advanced Combinatorics. Dordrecht, Holland: Reidel. p. 156.