Jump to content

1,3,5-Trioxane

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by PointlessUsername (talk | contribs) at 02:53, 12 June 2020 (Production). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

1,3,5-Trioxane
Trioxane molecule
Names
IUPAC name
1,3,5-Trioxane
Other names
s-Trioxane; 1,3,5-Trioxacyclohexane; Trioxymethylene; Metaformaldehyde; Trioxin
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.003.466 Edit this at Wikidata
RTECS number
  • YK0350000
UNII
  • InChI=1S/C3H6O3/c1-4-2-6-3-5-1/h1-3H2 checkY
    Key: BGJSXRVXTHVRSN-UHFFFAOYSA-N checkY
  • InChI=1/C3H6O3/c1-4-2-6-3-5-1/h1-3H2
    Key: BGJSXRVXTHVRSN-UHFFFAOYAW
  • O1COCOC1
Properties
C3H6O3
Molar mass 90.078 g·mol−1
Appearance White crystalline solid
Density 1.17 g/cm3 (65 °C)[1]
Melting point 62 °C (144 °F; 335 K)[1]
Boiling point 115 °C (239 °F; 388 K)[1]
221 g/L[1]
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
2
0
Flash point 45 °C (113 °F)[1]
Related compounds
Related compounds
Formaldehyde

1,2,4-Trioxane Polyoxymethylene

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

1,3,5-Trioxane, sometimes also called trioxane or trioxin, is a chemical compound with molecular formula C3H6O3. It is a white solid with a chloroform-like odor. It is a stable cyclic trimer of formaldehyde, and one of the three trioxane isomers; its molecular backbone consists of a six-membered ring with three carbon atoms alternating with three oxygen atoms. Thus, cyclotrimerization of formaldehyde affords 1,3,5-trioxane:

Production

Of pedagical value but not necessarily mechanistically significant, trioxane can be viewed as the product of the trimerization of formaldehyde or the condensation of three equivalents of dihydroxymethane.

In practice, trioxane is produced by acid-catalyzed reaction of concentrated aqueous solution of formaldehyde.[2]

Uses

Trioxane is often used interchangeably with formaldehyde and with paraformaldehyde.[3][4] It is a precursor for the production of polyoxymethylene plastics, of which about one million tons per year are produced.[2] Other applications exploit its tendency to release formaldehyde. As such it is used as a binder in textiles, wood products, etc. Trioxane is combined with hexamine and compressed into solid bars to make hexamine fuel tablets, used by the military and outdoorsmen as a cooking fuel.

In the laboratory, trioxane is used as an anhydrous source of formaldehyde.[5]

See also

References

  1. ^ a b c d e Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  2. ^ a b Reuss, Günther; Disteldorf, Walter; Gamer, Armin Otto; Hilt, Albrecht (2000). "Formaldehyde". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_619. ISBN 3527306730.
  3. ^ K. Chen; C. S. Brook; A. B. Smith, III (1998). "6,7-Dihydrocyclopenta-1,3-Dioxin-5(4H)-One". Organic Syntheses. 75: 189. doi:10.15227/orgsyn.075.0189.
  4. ^ D. S. Connor; G. W. Klein; G. N. Taylor; R. K. Boeckman, Jr; J. B. Medwid (1972). "Benzyl Chloromethyl Ether". Organic Syntheses. 52: 16. doi:10.15227/orgsyn.052.0016.
  5. ^ W. O. Teeters; M. A. Gradsten (1950). "Hexahydro-1,3,5-Tripropionyl-s-Triazine". Organic Syntheses. 30: 51. doi:10.15227/orgsyn.030.0051.