Jump to content

Superconductor classification

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Josephtheseal (talk | contribs) at 23:14, 28 July 2020 (By material constituents and structure). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Superconductors can be classified in accordance with several criteria that depend on physical properties, current understanding, and the expense of cooling them or their material.

By their magnetic properties

By the understanding we have about them

This criterion is important, as the BCS theory has explained the properties of conventional superconductors since 1957, yet there have been no satisfactory theories to explain unconventional superconductors fully. In most cases, type I superconductors are conventional, but there are several exceptions such as niobium, which is both conventional and type II.

By their critical temperature

Some now use 77 K as the split to emphasize whether or not we can cool the sample with liquid nitrogen (whose boiling point is 77K), which is much more feasible than liquid helium (an alternative to achieve the temperatures needed to get low-temperature superconductors).

By material constituents and structure

Most superconductors made of pure elements are type I (except niobium, technetium, vanadium, silicon, and the above-mentioned Carbon allotropes)
eg the "metallic" compounds Hg
3
NbF
6
and Hg
3
TaF
6
are both superconductors below 7 K (−266.15 °C; −447.07 °F).[2]

See also

References

  1. ^ Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani and Jun Akimitsu (March 1, 2001). "Superconductivity at 39 K in magnesium diboride". Nature. 410 (6824): 63–64. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ W.R. Datars, K.R. Morgan and R.J. Gillespie (1983). "Superconductivity of Hg3NbF6 and Hg3TaF6". Phys. Rev. B. 28: 5049–5052. Bibcode:1983PhRvB..28.5049D. doi:10.1103/PhysRevB.28.5049.