Molybdenum hexacarbonyl

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Headbomb (talk | contribs) at 14:55, 4 February 2020 (Add: url, bibcode, isbn, chapter. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this tool yourself. Report bugs here. | via #UCB_Gadget). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Molybdenum hexacarbonyl
Stereo, skeletal formula of molybdenum hexacarbonyl
Stereo, skeletal formula of molybdenum hexacarbonyl
Ball and stick model of molybdenum hexacarbonyl
Ball and stick model of molybdenum hexacarbonyl
Sample of molybdenum hexacarbonyl
Names
IUPAC name
Hexacarbonylmolybdenum(0)
Systematic IUPAC name
Hexacarbonylmolybdenum[1]
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.034.271 Edit this at Wikidata
EC Number
  • 237-713-3
3798, 562210
MeSH Hexacarbonylmolybdenum
UN number 3466
  • InChI=1S/6CO.Mo/c6*1-2; ☒N
    Key: KMKBZNSIJQWHJA-UHFFFAOYSA-N ☒N
  • O=C=[Mo](=C=O)(=C=O)(=C=O)(=C=O)=C=O
Properties
C6MoO6
Molar mass 264.01 g·mol−1
Appearance Vivid, white, translucent crystals
Density 1.96 g cm−3
Melting point 150 °C (302 °F; 423 K)
Boiling point 156 °C (313 °F; 429 K)
Structure
Orthogonal
Octahedral
0 D
Thermochemistry
−989.1 kJ mol−1
−2123.4 kJ mol−1
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
4
1
0
Safety data sheet (SDS) External MSDS
Related compounds
Related compounds
Chromium hexacarbonyl

Tungsten hexacarbonyl

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Molybdenum hexacarbonyl (also called molybdenum carbonyl) is the chemical compound with the formula Mo(CO)6. This colorless solid, like its chromium and tungsten analogues, is noteworthy as a volatile, air-stable derivative of a metal in its zero oxidation state.

Structure and properties

Mo(CO)6 adopts an octahedral geometry consisting of six rod-like CO ligands radiating from the central Mo atom. A recurring minor debate in some chemical circles concerns the definition of an "organometallic" compound. Usually, organometallic indicates the presence of a metal directly bonded via a M–C bond to an organic fragment, which must in turn have a C–H bond. By this strict definition, Mo(CO)6 is not organometallic.[citation needed]

Preparation

Mo(CO)6 is prepared by the reduction of molybdenum chlorides or oxides under a pressure of carbon monoxide,[citation needed] although it would be unusual to prepare this inexpensive compound in the laboratory. The compound is somewhat air-stable and sparingly soluble in nonpolar organic solvents.

Occurrence

Mo(CO)6 has been detected in landfills and sewage plants, the reducing, anaerobic environment being conducive to formation of Mo(CO)6.[2]

Intermediate in inorganic and organometallic synthesis

Mo(CO)6 is a popular reagent in organometallic synthesis[3] because one or more CO ligands can be displaced by other donor ligands.[4] Mo(CO)6, [Mo(CO)3(MeCN)3], and related derivatives are employed as catalysts in organic synthesis for example, alkyne metathesis and the Pauson–Khand reaction.

Mo(CO)6 reacts with 2,2′-bipyridine to afford Mo(CO)4(bipy). UV-photolysis of a THF solution of Mo(CO)6 gives Mo(CO)5(THF).

[Mo(CO)4(piperidine)2]

The thermal reaction of Mo(CO)6 with piperidine affords Mo(CO)4(piperidine)2. The two piperidine ligands in this yellow-colored compound are labile, which allows other ligands to be introduced under mild conditions. For instance, the reaction of [Mo(CO)4(piperidine)2] with triphenyl phosphine in boiling dichloromethane (b.p. ca. 40 °C) gives cis-[Mo(CO)4(PPh3)2]. This cis- complex isomerizes in toluene to trans-[Mo(CO)4(PPh3)2].[5]

[Mo(CO)3(MeCN)3]

Mo(CO)6 also can be converted to its tris(acetonitrile) derivative. The compound serves as a source of "Mo(CO)3". For instance treatment with allyl chloride gives [MoCl(allyl)(CO)2(MeCN)2], whereas treatment with KTp and sodium cyclopentadienide gives [MoTp(CO)3] and [MoCp(CO)3] anions, respectively. These anions react with a variety of electrophiles.[6] A related source of Mo(CO)3 is cycloheptatrienemolybdenum tricarbonyl.

Source of Mo atoms

Molybdenum hexacarbonyl is widely used in electron beam-induced deposition technique - it is easily vaporized and decomposed by the electron beam providing a convenient source of molybdenum atoms.[7]

Safety and handling

Like all metal carbonyls, Mo(CO)6 is dangerous source of volatile metal as well as CO.

References

  1. ^ "Hexacarbonylmolybdenum (CHEBI:30508)". Chemical Entities of Biological Interest (ChEBI). UK: European Bioinformatics Institute.
  2. ^ Feldmann, J. (1999). "Determination of Ni(CO)4, Fe(CO)5, Mo(CO)6, and W(CO)6 in Sewage Gas by Using Cryotrapping Gas Chromatography Inductively Coupled Plasma Mass Spectrometry". J. Environ. Monit. 1 (1): 33–37. doi:10.1039/a807277i. PMID 11529076.
  3. ^ Faller, J. W.; Brummond, K. M.; Mitasev, B. (2006). "Hexacarbonylmolybdenum". In Paquette, L. (ed.). Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rh004.pub2. ISBN 0471936235.
  4. ^ http://www.chm.bris.ac.uk/teaching-labs/inorganic2ndyear/2004-2005labmanual/Experiment3.pdf Archived March 9, 2008, at the Wayback Machine
  5. ^ Darensbourg, D. J.; Kump, R. L. (1978). "A Convenient Synthesis of cis-Mo(CO)4L2 Derivatives (L = Group 5a Ligand) and a Qualitative Study of Their Thermal Reactivity toward Ligand Dissociation". Inorg. Chem. 17 (9): 2680–2682. doi:10.1021/ic50187a062.
  6. ^ Elschenbroich, C.; Salzer, A. (1992). Organometallics: A Concise Introduction (2nd ed.). Weinheim: Wiley-VCH. ISBN 3-527-28165-7.
  7. ^ Randolph, S. J.; Fowlkes, J. D.; Rack, P. D. (2006). "Focused, Nanoscale Electron-Beam-Induced Deposition and Etching". Critical Reviews of Solid State and Materials Sciences. 31 (3): 55–89. Bibcode:2006CRSSM..31...55R. doi:10.1080/10408430600930438.

Further reading