Bat algorithm

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Bat algorithm is a metaheuristic algorithm for global optimization. It was inspired by the echolocation behaviour of microbats, with varying pulse rates of emission and loudness.[1][2] The Bat algorithm was developed by Xin-She Yang in 2010.[3]

Nature-inspired metaheuristics in general have started to attract criticism in the research community for hiding their lack of novelty behind an elaborate metaphor.[4][5][6][7][8] In response, Springer's Journal of Heuristics has updated their editorial policy to state that:[9]

Implementations should be explained by employing standard optimization terminology, where a solution is called a "solution" and not something else related to some obscure metaphor (e.g., harmony, flies, bats, countries, etc.).

Metaphor[edit]

The idealization of the echolocation of microbats can be summarized as follows: Each virtual bat flies randomly with a velocity at position (solution) with a varying frequency or wavelength and loudness . As it searches and finds its prey, it changes frequency, loudness and pulse emission rate . Search is intensified by a local random walk. Selection of the best continues until certain stop criteria are met. This essentially uses a frequency-tuning technique to control the dynamic behaviour of a swarm of bats, and the balance between exploration and exploitation can be controlled by tuning algorithm-dependent parameters in bat algorithm.

A detailed introduction of metaheuristic algorithms including the bat algorithm is given by Yang[10] where a demo program in Matlab/Octave is available, while a comprehensive review is carried out by Parpinelli and Lopes.[11] A further improvement is the development of an evolving bat algorithm (EBA) with better efficiency.[12]

Notes[edit]

  1. ^ J. D. Altringham, Bats: Biology and Behaviour, Oxford University Press, (1996).
  2. ^ P. Richardson, Bats. Natural History Museum, London, (2008)
  3. ^ Yang, X. S. (2010). "A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010)". Studies in Computational Intelligence. 284: 65–74. arXiv:1004.4170free to read. 
  4. ^ Weyland, Dennis (2010). "A Rigorous Analysis of the Harmony Search Algorithm: How the Research Community can be Misled by a "Novel" Methodology". International Journal of Applied Metaheuristic Computing. 1 (2): 50–60. doi:10.4018/jamc.2010040104. 
  5. ^ Sörensen, Kenneth (2013). "Metaheuristics—the metaphor exposed". International Transactions in Operational Research. 22: 3–18. doi:10.1111/itor.12001. In recent years, the field of combinatorial optimization has witnessed a true tsunami of "novel" metaheuristic methods, most of them based on a metaphor of some natural or man-made process. The behavior of virtually any species of insects, the flow of water, musicians playing together – it seems that no idea is too far-fetched to serve as inspiration to launch yet another metaheuristic. In this paper, we will argue that this line of research is threatening to lead the area of metaheuristics away from scientific rigor. 
  6. ^ Metaheuristics at Scholarpedia, curated by Fred Glover and Kenneth Sörensen. "A large (and increasing) number of publications focuses on the development of (supposedly) new metaheuristic frameworks based on metaphors. The list of natural or man-made processes that has been used as the basis for a metaheuristic framework now includes such diverse processes as bacterial foraging, river formation, biogeography, musicians playing together, electromagnetism, gravity, colonization by an empire, mine blasts, league championships, clouds, and so forth. An important subcategory is found in metaheuristics based on animal behavior. Ants, bees, bats, wolves, cats, fireflies, eagles, vultures, dolphins, frogs, salmon, vultures, termites, flies, and many others, have all been used to inspire a "novel" metaheuristic. [...] As a general rule, publication of papers on metaphor-based metaheuristics has been limited to second-tier journals and conferences, but some recent exceptions to this rule can be found. Sörensen (2013) states that research in this direction is fundamentally flawed. Most importantly, the author contends that the novelty of the underlying metaphor does not automatically render the resulting framework "novel". On the contrary, there is increasing evidence that very few of the metaphor-based methods are new in any interesting sense."
  7. ^ Jerry Swan, Steven Adriaensen, Mohamed Bishr, Edmund K. Burke, John A. Clark, Patrick De Causmaecker, Juanjo Durillo, Kevin Hammond, Emma Hart, Colin G. Johnson, Zoltan A. Kocsis, Ben Kovitz, Krzysztof Krawiec, Simon Martin, J. J. Merelo, Leandro L. Minku, Ender Özcan, Gisele L. Pappa, Erwin Pesch, Pablo Garcáa-Sánchez, Andrea Schaerf, Kevin Sim, Jim E. Smith, Thomas Stützle, Stefan Voß, Stefan Wagner, Xin Yao. "A Research Agenda for Metaheuristic Standardization". "Metaphors often inspire new metaheuristics, but without mathematical rigor, it can be hard to tell if a new metaheuristic is really distinct from a familiar one. For example, mathematically, 'Harmony search' turned out to be a simple variant of 'Evolution Strategies' even though the metaphors that inspired them were quite different. Formally describing state, representation, and operators allows genuine novelty to be distinguished from minor variation."
  8. ^ Alexander Brownlee and John R. Woodward (2015). "Why we fell out of love with algorithms inspired by nature". The Conversation.
  9. ^ Journal of Heuristic Policies on Heuristic Search Research. Springer. "Proposing new paradigms is only acceptable if they contain innovative basic ideas, such as those that are embedded in classical frameworks like genetic algorithms, tabu search, and simulated annealing. The Journal of Heuristics avoids the publication of articles that repackage and embed old ideas in methods that are claimed to be based on metaphors of natural or manmade systems and processes. These so-called "novel" methods employ analogies that range from intelligent water drops, musicians playing jazz, imperialist societies, leapfrogs, kangaroos, all types of swarms and insects and even mine blast processes (Sörensen, 2013). If a researcher uses a metaphor to stimulate his or her own ideas about a new method, the method must nevertheless be translated into metaphor-free language, so that the strategies employed can be clearly understood, and their novelty is made clearly visible. (See items 2 and 3 below.) Metaphors are cheap and easy to come by. Their use to "window dress" a method is not acceptable."
  10. ^ Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).
  11. ^ Parpinelli, R. S.; Lopes, H. S. (2011). "New inspirations in swarm intelligence: a survey,Int". J. Bio-Inspired Computation. 3: 1–16. doi:10.1504/ijbic.2011.038700. 
  12. ^ Tsai, P. W.; Pan, J. S.; Liao, B. Y.; Tsai, M. J.; Istanda, V. (2012). "Bat algorithm inspired algorithm for solving numerical optimization problems". Applied Mechanics and Materials. 148-149: 134–137. doi:10.4028/www.scientific.net/amm.148-149.134. 

Further reading[edit]

  • Yang, X.-S. (2014), Nature-Inspired Optimization Algorithms, Elsevier.