Jump to content

Benzoin (organic compound)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Jytdog (talk | contribs) at 15:58, 10 June 2016 (Undid revision 724644595 by 79.74.19.27 (talk) are you using Wikipedia as a lab notebook or something? Moving these to talk). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Benzoin (organic compound)
Names
IUPAC name
2-hydroxy-1,2-di(phenyl)ethanone
Other names
2-hydroxy-2-phenylacetophenone, 2-hydroxy-1,2-diphenylethanone, desyl alcohol, bitter almond oil camphor
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.938 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C14H12O2/c15-13(11-7-3-1-4-8-11)14(16)12-9-5-2-6-10-12/h1-10,13,15H checkY
    Key: ISAOCJYIOMOJEB-UHFFFAOYSA-N checkY
  • InChI=1/C14H12O2/c15-13(11-7-3-1-4-8-11)14(16)12-9-5-2-6-10-12/h1-10,13,15H
    Key: ISAOCJYIOMOJEB-UHFFFAOYAO
  • O=C(c1ccccc1)C(O)c2ccccc2
  • c1ccc(cc1)C(C(=O)c2ccccc2)O
Properties
C14H12O2
Molar mass 212.248 g·mol−1
Appearance off-white crystals
Density 1.31 g/cm3
Melting point 132 to 137 °C (270 to 279 °F; 405 to 410 K)
Boiling point 344 °C (651 °F; 617 K)
Slightly Soluble
Solubility in ethanol Slightly Soluble
Solubility in alcohol Soluble
Solubility in ether Slightly Soluble
Solubility in chlorine Soluble
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Lethal dose or concentration (LD, LC):
10.000 mg/kg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Benzoin (/ˈbɛnz.[invalid input: 'ɨ']n/ or /-ɔɪn/) is an organic compound with the formula PhCH(OH)C(O)Ph. It is a hydroxy ketone attached to two phenyl groups. It appears as off-white crystals, with a light camphor-like odor. Benzoin is synthesized from benzaldehyde in the benzoin condensation. It is chiral and it exists as a pair of enantiomers: (R)-benzoin and (S)-benzoin.

Benzoin is not a constituent of benzoin resin obtained from the benzoin tree (Styrax) or tincture of benzoin. The main component in these natural products is benzoic acid.

History

Benzoin was first reported in 1832 by Justus von Liebig and Friedrich Woehler during their research on oil of bitter almond, which is benzaldehyde with traces of hydrocyanic acid.[2] The catalytic synthesis by the benzoin condensation was improved by Nikolay Zinin during his time with Liebig.[3][4]

Uses

The main uses of benzoin are as a precursor to benzil, which is a photoinitiator.[5] The conversion proceeds by organic oxidation using copper(II),[6] nitric acid, or oxone. In one study, this reaction is carried out with atmospheric oxygen and basic alumina in dichloromethane.[7]

Preparation

Benzoin is prepared from benzaldehyde via the benzoin condensation.[8]

References

  1. ^ "Benzoin" (PDF). FischerSci. FischerSci.
  2. ^ Wöhler, Liebig; Liebig (1832). "Untersuchungen über das Radikal der Benzoesäure". Annalen der Pharmacie. 3 (3): 249–282. doi:10.1002/jlac.18320030302.
  3. ^ N. Zinin (1839). "Beiträge zur Kenntniss einiger Verbindungen aus der Benzoylreihe". Annalen der Pharmacie. 31 (3): 329–332. doi:10.1002/jlac.18390310312.
  4. ^ N. Zinin (1840). "Ueber einige Zersetzungsprodukte des Bittermandelöls". Annalen der Pharmacie. 34 (2): 186–192. doi:10.1002/jlac.18400340205.
  5. ^ Hardo Siegel, Manfred Eggersdorfer "Ketones" in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH, 2002 by Wiley-VCH, Wienheim. doi:10.1002/14356007.a15_077
  6. ^ Clarke, H. T.; Dreger.E. E. (1941). "Benzil". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 1, p. 87.
  7. ^ Konstantinos Skobridis; Vassiliki Theodorou; Edwin Weber (2006). "A very simple and chemoselective air oxidation of benzoins to benzils using alumina". Arkivoc. 06-1798JP: 102–106.
  8. ^ Clarke, H. T.; Dreger.E. E. (1941). "Benzil". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 1, p. 87.

External links

  • Benzoin synthesis, Organic Syntheses, Coll. Vol. 1, p. 94 (1941); Vol. 1, p. 33 (1921)