From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
A coprolite of a carnivorous dinosaur found in southwestern Saskatchewan. Photo by Karen Chin of the USGS.
A large Miocene coprolite from South Carolina, USA.
A large coprolite (fossilized feces) from South Carolina, USA.
Age: White River Oligocene; Location: Northwest Nebraska; Dimensions: Varies (25 mm X 20 mm); Weight: 8-10 g; Features: Many small inclusions and one has a complete toe bone from a small deer called a leptomeryx.

A coprolite (also known as a coprolith) is fossilized feces. Coprolites are classified as trace fossils as opposed to body fossils, as they give evidence for the animal's behaviour (in this case, diet) rather than morphology. The name is derived from the Greek words κόπρος (kopros, meaning "dung") and λίθος (lithos, meaning "stone"). They were first described by William Buckland in 1829. Prior to this they were known as "fossil fir cones" and "bezoar stones". They serve a valuable purpose in paleontology because they provide direct evidence of the predation and diet of extinct organisms.[1] Coprolites may range in size from a few millimetres to over 60 centimetres.

Coprolites, distinct from paleofaeces, are fossilized animal dung. Like other fossils, coprolites have had much of their original composition replaced by mineral deposits such as silicates and calcium carbonates. Paleofaeces, on the other hand, retain much of their original organic composition and can be reconstituted to determine their original chemical properties, though in practice the term coprolite is also used for ancient human faecal material in archaeological contexts.[2][3][4] In the same context, there are the urolites, erosions caused by evacuation of liquid wastes and nonliquid urinary secretions.[clarification needed See talk page.]

Initial discovery[edit]

The fossil hunter Mary Anning noticed[when?] that "bezoar stones" were often found in the abdominal region of ichthyosaur skeletons found in the Lias formation at Lyme Regis. She also noted that if such stones were broken open they often contained fossilized fish bones and scales as well as sometimes bones from smaller ichthyosaurs. It was these observations by Anning that led the geologist William Buckland to propose in 1829 that the stones were fossilized feces and name them coprolites. Buckland also suspected that the spiral markings on the fossils indicated that ichthyosaurs had spiral ridges in their intestines similar to those of modern sharks, and that some of these coprolites were black with ink from swallowed belemnites.[5]

Research value[edit]

By examining coprolites, paleontologists are able to find information about the diet of the animal (if bones or other food remains are present), such as whether it was a herbivorous or carnivorous, and the taphonomy of the coprolites, although the producer is rarely identified unambiguously, especially with more ancient examples.[6] In one example these fossils can be analyzed for certain minerals that are known to exist in trace amounts in certain species of plant that can still be detected millions of years later.[7] In another example, the existence of human proteins in coprolites can be used to pinpoint the existence of cannibalistic behavior in an ancient culture.[8] Parasite remains found in human and animal coprolites have also shed new light on questions of human migratory patterns, the diseases which plagued ancient civilizations, and animal domestication practices in the past (see archaeoparasitology and paleoparasitology).

Organic molecules found in fossil faecal matter can be also very informative about the producer of the coprolite,[9] its diet, or the paleoenvironment where it was deposited. The application of the faecal biomarker approach (the analysis of lipid molecules in faecal matter) in archaeological sites has provided groundbreaking evidence in key questions such as the peopling of the Americas, the Neanderthal diet, and the origin of the domestication of animals.[10][11][12]

Recognizing coprolites[edit]

A Miocene pseudocoprolite from Washington state. Commonly mistaken for coprolites because of their appearance and shape; they are actually of inorganic origin. Scale in mm. See Spencer (1993).

The recognition of coprolites is aided by their structural patterns, such as spiral or annular markings, by their content, such as undigested food fragments, and by associated fossil remains. The smallest coprolites are often difficult to distinguish from inorganic pellets or from eggs. Most coprolites are composed chiefly of calcium phosphate, along with minor quantities of organic matter. By analyzing coprolites, it is possible to infer the diet of the animal which produced them.

Coprolites have been recorded in deposits ranging in age from the Cambrian period [13] to recent times and are found worldwide. Some of them are useful as index fossils, such as Favreina from the Jurassic period of Haute-Savoie in France.

Some marine deposits contain a high proportion of fecal remains. However, animal excrement is easily fragmented and destroyed, so usually has little chance of becoming fossilized.

Coprolite mining[edit]

In 1842 the Rev John Stevens Henslow, a professor of Botany at St John's College, Cambridge, discovered coprolites just outside Felixstowe in Suffolk in the villages of Trimley St Martin,[14] Falkenham and Kirton[15] and investigated their composition. Realising their potential as a source of available phosphate once they had been treated with sulphuric acid, he patented an extraction process and set about finding new sources.[16] Very soon, coprolites were being mined on an industrial scale for use as fertiliser due to their high phosphate content. The major area of extraction occurred over the east of England, centred on Cambridgeshire and the Isle of Ely[17][18] with its refining being carried out in Ipswich by the Fison Company.[18] There is a Coprolite Street near Ipswich docks where the Fisons works once stood.[19] The industry declined in the 1880s[18][14] but was revived briefly during the First World War to provide phosphates for munitions.[17] A renewed interest in coprolite mining in the First World War extended the area of interest into parts of Buckinghamshire as far west as Woburn Sands.[16]

See also[edit]


  1. ^ "coprolite".
  2. ^ Gilbert MT, Jenkins DL, Götherstrom A, Naveran N, Sanchez JJ, Hofreiter M, Thomsen PF, Binladen J, Higham TF, Yohe RM, Parr R, Cummings LS, Willerslev E (May 2008). "DNA from pre-Clovis human coprolites in Oregon, North America". Science. 320 (5877): 786–9. Bibcode:2008Sci...320..786G. doi:10.1126/science.1154116. PMID 18388261.
  3. ^ Poinar H, Fiedel S, King CE, Devault AM, Bos K, Kuch M, Debruyne R (July 2009). "Comment on "DNA from pre-Clovis human coprolites in Oregon, North America"". Science. 325 (5937): 148, author reply 148. Bibcode:2009Sci...325..148P. doi:10.1126/science.1168182. PMID 19589985.
  4. ^ Goldberg P, Berna F, Macphail RI (July 2009). "Comment on "DNA from pre-Clovis human coprolites in Oregon, North America"". Science. 325 (5937): 148, author reply 148. Bibcode:2009Sci...325R.148G. doi:10.1126/science.1167531. PMID 19589984.
  5. ^ Rudwick, Martin Worlds Before Adam: The Reconstruction of Geohistory in the Age of Reform pp. 154-155.
  6. ^ Abhi (18 November 2005). "The Wonders of Dinosaur Dung". Sepia Mutiny.
  7. ^ Bakalar N (18 November 2005). "Dung Fossils Suggest Dinosaurs Ate Grass". National Geographic News.
  8. ^ Marlar RA, Leonard BL, Billman BR, Lambert PM, Marlar JE (September 2000). "Biochemical evidence of cannibalism at a prehistoric Puebloan site in southwestern Colorado". Nature. 407 (6800): 74–8. Bibcode:2000Natur.407...74M. doi:10.1038/35024064. PMID 10993075.
  9. ^ Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ, Evershed RP (March 2002). "The origin of faeces by means of biomarker detection". Environment International. 27 (8): 647–54. doi:10.1016/s0160-4120(01)00124-6. PMID 11934114.
  10. ^ Sistiaga A, Mallol C, Galván B, Summons RE (2014-06-25). "The Neanderthal meal: a new perspective using faecal biomarkers". PLOS One. 9 (6): e101045. Bibcode:2014PLoSO...9j1045S. doi:10.1371/journal.pone.0101045. PMC 4071062. PMID 24963925.
  11. ^ Sistiaga A, Berna F, Laursen R, Goldberg P (January 2014). "Steroidal biomarker analysis of a 14,000 years old putative human coprolite from Paisley Cave, Oregon". Journal of Archaeological Science. 41: 813–817. doi:10.1016/j.jas.2013.10.016. ISSN 0305-4403.
  12. ^ Shillito L, Bull ID, Matthews W, Almond MJ, Williams JM, Evershed RP (August 2011). "Biomolecular and micromorphological analysis of suspected faecal deposits at Neolithic Çatalhöyük, Turkey". Journal of Archaeological Science. 38 (8): 1869–1877. doi:10.1016/j.jas.2011.03.031. ISSN 0305-4403.
  13. ^ Julien Kimmig & Luke C. Strotz (2017). "Coprolites in mid-Cambrian (Series 2-3) Burgess Shale-type deposits of Nevada and Utah and their ecological implications" (PDF). Bulletin of Geosciences. 92 (3): 297–309. doi:10.3140/bull.geosci.1667.
  14. ^ a b Berridge Eve (2004). "Trimley St Martin and the Coprolite Mining Rush" (PDF). Archived from the original (PDF) on 2007-10-08.
  15. ^ Bernard O'Connor (2009). "(Corpolites in) Kirton, Suffolk". Retrieved 2017-02-02.
  16. ^ a b O'Connor B, Ford TD (2001). "The Origins and Development of the British Coprolite Industry" (PDF). Mining History: the Bulletin of the Peak District Mines Historical Society. 14 (5).
  17. ^ a b Grove R (1976). "Coprolite Mining in Cambridgeshire" (PDF). Agricultural History Review. 24 (1). Archived from the original (PDF) on 2006-03-09.
  18. ^ a b c "Cambridgeshire - The Coprolite Mining Industry". EnglandGenWeb. 13 January 2000.
  19. ^ "Industrial Revolution". BBC Suffolk. Archived from the original on 2006-02-20.


  • Spencer, P. K. (1993). "The "coprolites" that aren't: the straight poop on specimens from the Miocene of southwestern Washington State". Ichnos. 2 (3): 1–6. doi:10.1080/10420949309380097.
  •  This article incorporates text from a publication now in the public domainUnsigned (1911). "Coprolites". In Chisholm, Hugh. Encyclopædia Britannica. 7 (11th ed.). Cambridge University Press. p. 111–112.