Jump to content

Deep-sea community

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Vsmith (talk | contribs) at 12:11, 26 May 2015 (Reverted to revision 663365132 by Epipelagic (talk): WP:Block evasion. (TW)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Giant tube worms
Asterechinus elegans

Deep sea communities are groups of organisms associated by a shared habitat in the deep sea. They remain largely unexplored, due to the technological and logistical challenges and expense involved in visiting these remote biomes. Because of the unique challenges (particularly the high barometric pressure, extremes of temperature and absence of light), it was long believed that little life existed in this hostile environment. Since the 19th century however, research has demonstrated that significant biodiversity exists in the deep sea.

The three main sources of energy and nutrients for deep sea communities are marine snow, whale falls, and chemosynthesis at hydrothermal vents and cold seeps.

History

Prior to the 19th century scientists assumed life was sparse in the deep ocean. In the 1870s Sir Charles Thompson and colleagues aboard the Challenger expedition discovered many deep-sea creatures of widely varying types.

The first discovery of any deep-sea chemosynthetic community including higher animals was unexpectedly made at hydrothermal vents in the eastern Pacific Ocean during geological explorations (Corliss et al., 1979).[1] Two scientists, J. Corliss and J. van Andel, first witnessed dense chemosynthetic clam beds from the submersible DSV Alvin on February 17, 1977, after their unanticipated discovery using a remote camera sled two days before.[1]

The Challenger Deep is the deepest surveyed point of all of Earth's oceans; it is located at the southern end of the Mariana Trench near the Mariana Islands group. The depression is named after HMS Challenger, whose researchers made the first recordings of its depth on 23 March 1875 at station 225. The reported depth was 4,475 fathoms (8184 meters) based on two separate soundings. In 1960, Don Walsh and Jacques Piccard descended to the bottom of the Challenger Deep in the Trieste bathyscaphe. At this great depth a small flounder-like fish was seen moving away from the spotlight of the bathyscaphe.

The Japanese remote operated vehicle (ROV) Kaiko became the second vessel to reach the bottom of the Challenger Deep in March 1995. Nereus, a hybrid remotely operated vehicle (HROV) of the Woods Hole Oceanographic Institution, is the only vehicle capable of exploring ocean depths beyond 7000 meters. Nereus reached a depth of 10,902 meters at the Challenger Deep on May 31, 2009.[2][3] On 1 June 2009, sonar mapping of the Challenger Deep by the Simrad EM120 multibeam sonar bathymetry system aboard the R/V Kilo Moana indicated a maximum depth of 10,971 meters (6.817 miles). The sonar system uses phase and amplitude bottom detection, with an accuracy of better than 0.2% of water depth (this is an error of about 22 meters at this depth).[3][4]

Environment

Darkness

Pelagic zones

The ocean can be conceptualized as being divided into various zones, depending on depth, and presence or absence of sunlight. Nearly all life forms in the ocean depend on the photosynthetic activities of phytoplankton and other marine plants to convert carbon dioxide into organic carbon, which is the basic building block of organic matter. Photosynthesis in turn requires energy from sunlight to drive the chemical reactions that produce organic carbon.[5]

The stratum of the water column up till which sunlight penetrates is referred to as the photic zone. The photic zone can be subdivided into two different vertical regions. The uppermost portion of the photic zone, where there is adequate light to support photosynthesis by phytoplankton and plants, is referred to as the euphotic zone (also referred to as the epipelagic zone, or surface zone).[6] The lower portion of the photic zone, where the light intensity is insufficient for photosynthesis, is called the dysphotic zone (dysphotic means "poorly lit" in Greek).[7] The dysphotic zone is also referred to as the mesopelagic zone, or the twilight zone.[8] Its lowermost boundary is at a thermocline of 12 °C (54 °F), which, in the tropics generally lies between 200 and 1000 meters.[9]

The euphotic zone is somewhat arbitrarily defined as extending from the surface to the depth where the light intensity is approximately 0.1–1% of surface sunlight irradiance, depending on season, latitude and degree of water turbidity.[6][7] In the clearest ocean water, the euphotic zone may extend to a depth of about 150 meters,[6] or rarely, up to 200 meters.[8] Dissolved substances and solid particles absorb and scatter light, and in coastal regions the high concentration of these substances causes light to be attenuated rapidly with depth. In such areas the euphotic zone may be only a few tens of meters deep or less.[6][8] The dysphotic zone, where light intensity is considerably less than 1% of surface irradiance, extends from the base of the euphotic zone to about 1000 meters.[9] Extending from the bottom of the photic zone down to the seabed is the aphotic zone, a region of perpetual darkness.[8][9]

Since the average depth of the ocean is about 4300 meters,[10] the photic zone represents only a tiny fraction of the ocean’s total volume. However, due to its capacity for photosynthesis, the photic zone has the greatest biodiversity and biomass of all oceanic zones. Nearly all primary production in the ocean occurs here. Any life forms present in the aphotic zone must either be capable of movement upwards through the water column into the photic zone for feeding, or must rely on material sinking from above,[5] or must find another source of energy and nutrition, such as occurs in chemosynthetic archaea found near hydrothermal vents and cold seeps.

Hyperbaricity

Location of the Challenger Deep in the Mariana Trench

These animals have evolved to survive the extreme pressure of the sub-photic zones. The pressure increases by about one atmosphere every ten meters. To cope with the pressure, many fish are rather small, usually not exceeding 25 cm in length. Also, scientists have discovered that the deeper these creatures live, the more gelatinous their flesh and more minimal their skeletal structure. These creatures have also eliminated all excess cavities that would collapse under the pressure, such as swim bladders.[11]

Pressure is the greatest environmental factor acting on deep-sea organisms. In the deep sea, although most of the deep sea is under pressures between 200 and 600 atm, the range of pressure is from 20 to 1,000 atm. Pressure exhibits a great role in the distribution of deep sea organisms. Until recently, people lacked detailed information on the direct effects of pressure on most deep-sea organisms, because virtually all organisms trawled from the deep sea arrived at the surface dead or dying. With the advent of traps that incorporate a special pressure-maintaining chamber, undamaged larger metazoan animals have been retrieved from the deep sea in good condition. Some of these have been maintained for experimental purposes, and we are obtaining more knowledge of the biological effects of pressure.

Temperature

The two areas of greatest and most rapid temperature change in the oceans are the transition zone between the surface waters and the deep waters, the thermocline, and the transition between the deep-sea floor and the hot water flows at the hydrothermal vents. Thermoclines vary in thickness from a few hundred meters to nearly a thousand meters. Below the thermocline, the water mass of the deep ocean is cold and far more homogeneous. Thermoclines are strongest in the tropics, where the temperature of the epipelagic zone is usually above 20°C. From the base of the epipelagic, the temperature drops over several hundred meters to 5 or 6°C at 1,000 meters. It continues to decrease to the bottom, but the rate is much slower. Below 3,000 to 4,000 m, the water is isothermal. At any given depth, the temperature is practically unvarying over long periods of time. There are no seasonal temperature changes, nor are there any annual changes. No other habitat on earth has such a constant temperature.

Hydrothermal vents are the direct contrast with constant temperature. In these systems, the temperature of the water as it emerges from the "black smoker" chimneys may be as high as 400°C (it is kept from boiling by the high hydrostatic pressure) while within a few meters it may be back down to 2–4°C.[12]

Salinity

NOAA rendering of a brine pool in the Gulf of Mexico

Salinity is remarkably constant throughout the depths of the deep sea. There are two notable exceptions to this rule:

1. In the Mediterranean Sea, water loss through evaporation greatly exceeds input from precipitation and river runoff. Because of this, salinity in the Mediterranean is higher than in the Atlantic Ocean.[13] Evaporation is especially high in its eastern half, causing the water level to decrease and salinity to increase in this area.[14] The resulting pressure gradient pushes relatively cool, low-salinity water from the Atlantic Ocean across the basin. This water warms and becomes saltier as it travels eastward, then sinks in the region of the Levant and circulates westward, to spill back into the Atlantic over the Strait of Gibraltar.[15] The net effect of this is that at the Strait of Gibraltar, there is an eastward surface current of cold water of lower salinity from the Atlantic, and a simultaneous westward current of warm saline water from the Mediterranean in the deeper zones. Once back in the Atlantic, this chemically distinct Mediterranean Intermediate Water can persist for thousands of kilometers away from its source.[16]
2. Brine pools are large areas of brine on the seabed. These pools are bodies of water that have a salinity that is three to five times greater than that of the surrounding ocean. For deep sea brine pools the source of the salt is the dissolution of large salt deposits through salt tectonics. The brine often contains high concentrations of methane, providing energy to chemosynthetic extremophiles that live in this specialized biome. Brine pools are also known to exist on the Antarctic continental shelf where the source of brine is salt excluded during formation of sea ice. Deep sea and Antarctic brine pools can be toxic to marine animals. Brine pools are sometimes called seafloor lakes because the dense brine creates a halocline which does not easily mix with overlying seawater. The high salinity raises the density of the brine, which creates a distinct surface and shoreline for the pool.[17]

The deep sea, or deep layer, is the lowest layer in the ocean, existing below the thermocline, at a depth of 1000 fathoms (1800 m) or more. The deepest part of the deep sea is Mariana Trench located in the western North Pacific. It is also the deepest point of the earth's crust. It has a maximum depth of about 10.9 km which is deeper than the height of Mount Everest.[18] In 1960, Don Walsh and Jacques Piccard reached the bottom of Mariana Trench in the Trieste bathyscaphe. The pressure is about 11,318 metric tons-force per square meter (110.99 MPa or 16100 psi).

Zones

Mesopelagic

Bathyal

Abyssal

Hadal

Energy sources

Wood fall as an energy source.

Marine snow

The upper photic zone of the ocean is filled with particle organic matter (POM) and is quite productive, especially in the coastal areas and the upwelling areas. However, most POM is small and light. It may take hundreds, or even thousands of years for these particles to settle through the water column into the deep ocean. This time delay is long enough for the particles to be remineralized and taken up by organisms in the food webs.

Scientists at Woods Hole Oceanographic Institution conducted an experiment three decades ago in deep Sargasso Sea looking at the rate of sinking.[19] They found what became known as marine snow in which the POM are repackaged into much larger particles which sink at much greater speed, 'falling like snow'.

Because of the sparsity of food, the organisms living on and in the bottom are generally opportunistic. They have special adaptations for this extreme environment: rapid growth, effect larval dispersal mechanism and the ability to use a ‘transient’ food resource. One typical example is wood-boring bivalves, which bore into wood and other plant remains and are fed on the organic matter from the remains.

Whale falls

For the deep-sea ecosystem, the death of a whale is the most important event. A dead whale can bring hundreds of tons of organic matter to the bottom. Whale fall community progresses through three stages:[20]

  1. Mobile scavenger stage: Big and mobile deep-sea animals arrive at the site almost immediately after whales fall on the bottom. Amphipods, crabs, sleeper sharks and hagfish are all scavengers.
  2. Opportunistic stage: One interesting genus is Osedax.[21] Osedax is an interesting tube worm. The larva is born without sex. The surrounding environment determines the sex of the larva. When a larva settles on a whale bone, it turns into a female; when a larva settles on or in a female, it turns into a dwarf male. One female Osedax can carry more than 200 of these male individuals in its oviduct.
  3. Sulfophilic stage: Further decomposition of bones and seawater sulfate reduction happen at this stage. Bacteria create a sulphide-rich environment analogous to hydrothermal vents. Polynoids, bivalves, gastropods and other sulphur-loving creatures move in.

Chemosynthesis

Hydrothermal vents

hydrothermal vent

Hydrothermal vents were discovered in 1977 by scientists from Scripps Institution of Oceanography. So far, the discovered hydrothermal vents are all located at the boundaries of plates: East Pacific, California, Mid-Atlantic ridge, China and Japan.

New ocean basin material is being made in regions such as the Mid-Atlantic ridge as tectonic plates pull away from each other. The rate of spreading of plates is 1–5 cm/yr. Cold sea water circulates down through cracks between two plates and heats up as it passes through hot rock. Minerals and sulfides are dissolved into the water during the interaction with rock. Eventually, the hot solutions emanate from an active sub-seafloor rift, creating a hydrothermal vent.

Chemosynthesis of bacteria provide the energy and organic matter for the whole food web in vent ecosystems. Giant tube worms can grow to 2.4 m (7 ft 10 in)[22] tall because of the richness of nutrients. Over 300 new species have been discovered at hydrothermal vents.[23]

Hydrothermal vents are entire ecosystems independent from sunlight, and may be the first evidence that the earth can support life without the sun.

Cold seeps

A cold seep (sometimes called a cold vent) is an area of the ocean floor where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs, often in the form of a brine pool.

See also

References

  1. ^ a b Minerals Management Service Gulf of Mexico OCS Region (November 2006). "Gulf of Mexico OCS Oil and Gas Lease Sales: 2007–2012. Western Planning Area Sales 204, 207, 210, 215, and 218. Central Planning Area Sales 205, 206, 208, 213, 216, and 222. Draft Environmental Impact Statement. Volume I: Chapters 1–8 and Appendices". U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans. page 3-27. PDF
  2. ^ "Robot sub reaches deepest ocean". BBC News. 3 June 2009. Retrieved 2009-06-03.
  3. ^ a b University of Hawaii Marine Center (4 June 2009). "Daily Reports for R/V KILO MOANA June & July 2009". Honolulu, Hawaii: University of Hawaii. Retrieved 24 June 2010.
  4. ^ University of Hawaii Marine Center (4 June 2009). "Inventory of Scientific Equipment aboard the R/V KILO MOANA". Honolulu, Hawaii: University of Hawaii. Retrieved 18 June 2010.
  5. ^ a b K.L. Smith, Jr, H.A. Ruhl, B.J. Bett, D.S.M. Billett, R.S. Lampitt & R.S. Kaufmann (17 November 2009). "Climate, carbon cycling, and deep-ocean ecosystems". PNAS. 106 (46): 19211–19218. Bibcode:2009PNAS..10619211S. doi:10.1073/pnas.0908322106. PMC 2780780. PMID 19901326. Retrieved 19 June 2010.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ a b c d Jorge Csirke (1997). "II. The Limits of Marine Productivity". In Edward A. Laws (ed.). El Niño and the Peruvian Anchovy Fishery (series: Global Change Instruction Program) (PDF). Sausalito: University Science Books. p. 4. doi:10.1023/A:1008801515441. ISBN 0-935702-80-6. Retrieved 18 June 2010.
  7. ^ a b Encyclopædia Britannica (2010). "Photic zone". Encyclopædia Britannica Online. Retrieved 18 June 2010. {{cite web}}: External link in |publisher= (help)
  8. ^ a b c d Jeananda Col (2004). "Twilight Ocean (Disphotic) Zone". [http://www.EnchantedLearning.com EnchantedLearning.com. Retrieved 18 June 2010. {{cite web}}: External link in |publisher= (help)
  9. ^ a b c Ken O. Buesseler, Carl H. Lamborg, Philip W. Boyd, Phoebe J. Lam; et al. (27 April 2007). "Revisiting Carbon Flux Through the Ocean's Twilight Zone". Science. 316 (5824): 567–570. Bibcode:2007Sci...316..567B. doi:10.1126/science.1137959. PMID 17463282. Retrieved 18 June 2010.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ National Oceanic and Atmospheric Administration (2 December 2008). "How deep is the ocean?". Washington, DC: National Oceanic and Atmospheric Administration. Retrieved 19 June 2010.
  11. ^ The Deep Sea at MarineBio.org – Ocean biology, Marine life, Sea creatures, Marine conservation
  12. ^ Nybakken, James W. Marine Biology: An Ecological Approach. Fifth Edition. Benjamin Cummings, 2001. p. 136–141.
  13. ^ Paul R. Pinet (1996). Invitation to Oceanography (3rd ed.). St Paul, MN: West Publishing Co. p. 202. ISBN 0-314-06339-0.>Template:Inconsistent citations{{cite book}}: CS1 maint: postscript (link)
  14. ^ Pinet 1996, p. 206.
  15. ^ Pinet 1996, pp. 206–207.
  16. ^ Pinet 1996, p. 207.
  17. ^ NOAA exploration of a brine pool
  18. ^ "deep sea".
  19. ^ "Marine Snow and Fecal Pellets".
  20. ^ Shana Goffredi, Unusual benthic fauna associated with a whale fall in Monterey Canyon, California, Deep-sea Research, 1295–1304, 2004
  21. ^ Noah K. Whiteman, Between a whale bone and the deep blue sea: the provenance of dwarf males in whale bone-eating tube worms, Molecular Ecology, 4395–4397, 2008
  22. ^ "Giant tube worm".
  23. ^ Botos, Sonia. "Life on a hydrothermal vent".

Further reading