Diethylbenzenes

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by TheresNoTime (talk | contribs) at 12:45, 4 November 2016 (Disambiguated: ethylethyl group). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Diethylbenzenes
Identifiers
ECHA InfoCard 100.042.599 Edit this at Wikidata
Properties
Molar mass 134.22
Density 0.87 g/mL
Hazards
Flash point 134.6 °F / 57 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diethylbenzene (DEB) refers to any of three isomers with the formula C6H4(C2H5)2. Each consists of a benzene ring and two ethyl substituents. The meta and para have the greater commercial significance. All are colorless liquids.[2]

Production and applications

Diethylbenzenes arise as side-products of the alkylation of benzene with ethylene, which can described as two steps. The first step is the industrial route to ethylbenzene, which is produced on a large scale as a precursor to styrene.

C6H6 + C2H4 → C6H5C2H5

The diethylbenzene is an inadvertent side product.

C6H5C2H5 + C2H4 → C6H4(C2H5)2

Using shape-selective zeolite catalysts, the para isomer can be produced in high selectivity.

Much diethylbenzene is recycled by transalkylation give ethylbenzene:[2]

C6H4(C2H5)2 + C6H6 → 2 C6H5C2H5

Uses

Diethylbenzene is used in a mixture with methyl and/or ethyl biphenyls as a low temperature heat transfer fluid.[3]

Diethylbenzene is dehydrogenated to give divinylbenzene (DVB):

C6H4(C2H5)2 → C6H4(C2H3)2 + 2 H2

DVB is used in the production of crosslinked polystyrene.[4]

References

  1. ^ "Diethylbenzene 95% | Sigma-Aldrich". www.sigmaaldrich.com. Retrieved 2016-06-17.
  2. ^ a b Karl Griesbaum, Arno Behr, Dieter Biedenkapp, Heinz-Werner Voges, Dorothea Garbe, Christian Paetz, Gerd Collin, Dieter Mayer, Hartmut Höke "Hydrocarbons" in Ullmann's Encyclopedia of Industrial Chemistry 2002 Wiley-VCH, Weinheim. doi:10.1002/14356007.a13_227
  3. ^ Buske, Gary R.; Wenger, Terry L.; Beyrau, John A. (Nov 11, 1986), Heat-transfer fluid, retrieved 2016-06-30
  4. ^ Denis H. James William M. Castor, “Styrene” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a25_329.pub2.