Jump to content

Draft:Organomagnesium chemistry

From Wikipedia, the free encyclopedia


Organomagnesium chemistry, a subfield of organometallic compounds, refers to the study of magnesium compounds that contains Mg-C bonds. Magnesium is the second element in group 2 (alkaline earth metals), and the ionic radius of Mg2+ is 86 pm, which is larger than Be2+ (59 pm) and smaller than the heavier alkaline earth metal dications (Ca2+ 114 pm, Sr2+ 132 pm, Ba2+ 149 pm),[1] in accordance with periodic trends. Magnesium is less covalent compared to beryllium, and the radius is not large enough for accommodating large number of ligands compared to calcium, strontium and barium. Thus, organomagnesium compounds exhibit unique structure and reactivity in group 2.[2]

The most important type of organomagnesium compound is the Grignard reagents,[3] which are widely used in different fields of synthetic chemistry, especially in organic synthesis, for Grignard reagents serves as a robust source of carbanion. Although most other directions in organomagnesium chemistry are mainly limited to research interest, some areas, such as their application in catalysis and materials, are fast developing. Although most characterized Mg(I) and Mg(0) compounds do not contain Mg-C bonds,[4][5][6] which means they cannot be rigorously categorized as organomagnesium compounds, they will be briefly discussed at the end of this page because of their great importance.

Carbon as Anionic σ-Ligand

[edit]

Grignard reagents (RMgX)

[edit]

Main article: Grignard reagent

Discovered by Victor Grignard at the University of in 1900,[7] compounds with empirical formula RMgX (R = carbanion, X = Cl, Br, I) are known as Grignard reagents, which are widely used in organic synthesis and ligand preparation.[8][9][10] Grignard reagents are a common source of carbanion, which can be used to perform nucleophilic addition, substitution, transmetalation, and metal-halogen exchange reactions. The first crystal structure of Grignard reagents was reported by Guggenberger and Rundle in 1964,[11][12] from a crystalline EtMgBr(THF)2 (Et = ethyl, THF = tetrahydrofuran). The Mg-C bond length was found to be 2.15(2) Å, which is about the sum of covalent radii of magnesium (141(7) pm) and carbon (76(1) pm at sp3 hybridization).[13]

Although Grignard reagents were discovered and commonly used in 1900s, the corresponding fluoride RMgF was not synthesized until 1970, plausibly because of the difficulty in breaking the strong C-F bond.[14] In 1920 Swarts reported the reduction of amyl fluoride to the corresponding hydrocarbon with activated magnesium,[15] while no intermediates were separated. Alkylmagnesium fluoride was first prepared by Ashly and co-workers in 1970, using metal magnesium and catalytic iodine in refluxing tetrahydrofuran or 1,2-dimethoxyethane from the corresponding alkyl fluoride.[16][17]

Grignard reagents forms dimers in solutions, and the R and X groups are exchanged between magnesium centers, enabling the Schlenk equilibrium between RMgX and MgR2 and MgX2. Recent ab initio molecular dynamics computations[18][19] have shown that the formation of such dimers is crucial for explaining the reactivity of Grignard reagents.

General scheme of dimerization of Grignard reagents and Schlenk equilibrium

Magnesium dihydrocarbyl and other hydrocarbyl magnesium

[edit]

Dialkylmagnesium is another convenient precursor of magnesium complexes, which is useful when halides are unwanted. Dialkylmagnesium is usually prepared from Grignard reagents, via precipitation of magnesium halide.[20] Solid state dialkylmagnesium forms one-dimensional chains via Mg-C-Mg 3c-2e bonds, and the Mg-C bond length is 2.24(3) Å in dimethylmagnesium (Me2Mg)n,[21] which is about 10 pm longer than the terminal alkyl-Mg bonds (e.g. 2.15(2) Å in EtMgBr(THF)2). Molecular oligomer of dialkylmagnesium with terminal ligands were also synthesized with similar Mg-C bonding scheme.[22] With large steric hinderance, diaryl magnesium [(2,6-Et2C6H3)2Mg] was found to be a molecular dimer with bridging aryl groups, and the bridging Mg-C distances range between 2.243(7) to 2.296(7) Å.[23] Similar bridging alkynyl groups were found in [(Me3Si)2NMg(C≡CR)(THF)]2 (R = Ph, SiMe3) with the bridging Mg-C distance ranging from 2.189(4) to 2.283(4) Å.[24]

Synthesis and structure of [(2,6-Et2C6H3)2Mg]2[23]

By applying synergistic effect of magnesium and another alkaline metal,[25][26] deprotonation of hydrocarbon derivatives has become another facile method to achieve the corresponding magnesium complexes. For example, in 2001 Mulvey achieved tetradeprotonation of ferrocene trapped in an amide cationic ring with four magnesium and four sodium, [(iPr2N)8Na4Mg4{Fe(C5H3)2}], from free ferrocene and [Na(iPr2N)2Mg(nBu)].[27][28]

Carbon as Neutral σ-Ligand

[edit]

Carbonyl complexes

[edit]
Predicted structure of [Mg(O3)2(CO)2][29]

Unlike beryllium[30][31], calcium, strontium, and barium,[32] no homoleptic carbonyl complex of magnesium has been found, probably because it lacks available (n-1)d orbitals, and it has low covalency. However, [Mg(O3)2(CO)2] which contains ozonide anion (O3-) was identified when condensing atomic magnesium, oxygen and carbon monoxide in solid argon matrix.[29] The compound shows increased C-O stretching frequency at 2188.9 cm-1, compared to free carbon monoxide (2143 cm-1), indicating little back-bonding from magnesium to the carbonyl.

N-Heterocyclic Carbene complexes

[edit]

The first characterized N-heterocyclic carbene (NHC) complex of magnesium, [(IMes)MgEt2]2 were synthesized in 1993 by Arduengo and co-workers, by simply mixing the stable carbene with diethylmagnesium.[33] In [(IMes)MgEt2]2 the Mg-C(IMes) bond length was found to be 2.279(3) Å, which is significantly longer than the terminal Mg-C(Et) bond of 2.133(4) Å.

In 1995 Arduengo and co-workers characterized NHC adduct of MgCp*2 (Cp* = pentamethylcyclopentadienyl), which features one η5- and one η3-Cp* ligands.[34] NHCs with side arms were also explored. The amido NHC complex of magnesium was synthesized by Arnold and colleagues in 2004,[35] and the magnesium complex using NHC with phenol arms were synthesized and characterized by Zhang and Kawaguchi in 2006.[36]

First examples of neutral magnesium-NHC complexes[33][34][35][36]

Since NHCs are better σ donors than ethers like THF,[37] it provides a scaffold for cationic molecular magnesium complexes, for it is categorized as neutral L-type ligand. In 2019, Dagorne and co-workers reported the first cationic alkyl magnesium supported by NHC ligand, [LMgMe(THF)2]+ BPh4- (L = IMes, IPr).[38] The synthesis proceeds through an interesting dimeric intermediate with two uncommon μ2-Me bridges. In [(IPr)MgMe(THF)2]+, the Mg-C(IPr) distance was found to be 2.2224(13) Å, which is slightly shorter than the distance in neutral NHC complexes.

Synthesis of cationic magnesium-NHC complex[38]

Notably, Gilliard and co-workers reported the equilibrium between L2MgMeBr and [L3MgMe]+Br- (L = 1,3,4,5-tetramethylimidazol-2-ylidene) in d5-bromobenzene,[39] showing the substitution is facile despite its being endothermic.

Equilibrium between neutral and ionic magnesium-NHC complexes[39]

Carbon as π-Ligand

[edit]

Allyl complexes

[edit]

Allyl Grignard reagents exhibit high reactivity and special selectivity compared to alkyl ones.[40][41] X-ray determination of single crystal structure[42][43][44] and NMR spectroscopy[45][46][47] both suggest that the allyl groups favor an η1- instead of η3-coordination pattern. Density functional theory (DFT) computations[48] have shown that the homoleptic complex (C3H5)2Mg adopts a C2-symmetric geometry with two η3-allyl groups, while coordination of THF molecules changed the allyl groups to η1.

Allyl groups can also serve as bridging ligands. In 2001, Balley and co-workers reported a magnesium complex {(Dipp-tBuNacNac)Mg(C3H5)}6 (Dipp-tBuNacnac = [HC{C(tBu)NDipp}2]-) featuring six μ-η1:η1 allyl ligands.[49] Bridging μ-η1:η2 allyl ligands were also identified in a dimeric silyl allyl magnesium complex.[48]

Synthesis of {(Dipp-tBuNacNac)Mg(C3H5)}6[49]

Cylopentadienyl complexes

[edit]

Dicyclopentadienyl (Cp) magnesium or magnesocene (Cp2Mg) was first characterized in 1954 by Wilkinson and Cotton,[50] and later crystal structure analysis[51][52] shows that it features a 5-fold symmetry with two η5-cyclopentadienyl ligands. MgCp2 has an average Mg-C distance of 2.304(8) Å an average C-C distance of 1.39(2) Å, which is in agreement with a later gas-phase diffraction study.[53] For comparison, in ferrocene the Fe-C distance is 2.04(1) Å and the C-C distance is 1.40(2) Å. Magnesocene derivatives generally adopt the ideal structures with staggered parallel Cp rings, though introducing large steric hinderance may distort the geometry, such as [{1,2,4-(Me3Si)3C5H2}2Mg] which has slightly bent sandwich structure.[54]

25Mg-NMR spectroscopy suggested the Mg-Cp interaction has significant covalent character.[55] However, because of lacking (n-1)d orbitals and back bonding,[56] the Mg-Cp interaction is weak, enabling cyclopentadienyl magnesium complexes to serve as Cp- precursor. For example, in the following reaction Cp2Mg transfers two Cp- ligands to synthesize the [MnCp3]- anion:[57]

Synthesizing the [MnCp3]- anion from Cp2Mg and Cp2Mn[57]

Adding ligands to magnesocene derivatives gives bent Cp2MgL species, and the bonding modes of the cyclopentadiene are sensitive to the changes in the coordination environment.[34] In [(C5Me4H)2MgL] (L = 1,3-di-iso-propyl-4,5-dimethylimidazol-2-ylidene),[58] one of the C5Me4H ligand is slipped by 0.807 Å from the center, which makes difference of 0.69 Å between the shortest and the longest Mg-C distance on the ligand. Thus the complex can be described as [(η5-C5Me4H)(η3-C5Me4H)MgL].

Magnesium anthracene

[edit]

Another important complex is the magnesium anthracene, which was first prepared by Ramsden in 1965, using a THF suspension of magnesium and anthracene.[59] From the solution crystalline [(C14H10)Mg(THF)3] can be obtained, showing two relatively shorter Mg-C distances of 2.225(1) Å, on C9 and C10 of the anthracene.[60][61] [(C14H10)Mg(THF)3] reacts like [C14H10]2- with the two negative charges mainly localized on C9 and C10, and can thus act as nucleophile to give functionalized anthracene or 9,10-dihydroanthracene derivatives.[62] One of its recent application is to synthesize dibenzo-7λ3-phosphanorbornadiene (RPC14H10), which can be used as phosphinidene transfer reagent.[63]

Synthesis and application of dibenzo-7λ3-phosphanorbornadiene[63]

Magnesium complexes with neutral π ligands

[edit]

One of the first magnesium-neutral C=C π interactions was identified in [(DBAP)2Mg]2 (DBAP = dibenzo[b,f]azepinate) by Harder and co-workers in 2017.[64] The structure features one magnesium atom coordinated by four amino groups, and the other magnesium atom is weakly bound to three nitrogen atoms and three C=C π bonds. The Mg-olefin geometry is slightly asymmetric, with the shorter Mg-C distance range from 2.653(3) to 2.832(3) Å with an average of 2.740 Å, and the longer ones vary from 2.792(3) to 2.920(3) Å with an average of 2.848 Å. Previous research has also shown Mg-C distances of 2.559(6) to 2.638(3) Å in a tetrakis(2-aryloxy)ethylene system,[65] but the shorter distance may be attributed to steric restriction.[64]

Synthesis of [(DBAP)2Mg]2 and the schematic binding mode of DBAP[64]

In 2018, Harder and co-workers identified the first intramolecular Mg-π interaction in a cationic NacNac supported system, i.e., [(Dipp-NacNac)Mg(EtC≡CEt)][B(C6F5)4] and [(Dipp-NacNac)Mg(η3-C6H6)][B(C6F5)4] (Dipp-Nacnac = [HC{C(Me)NDipp}2]-).[66] In the alkyne complex the two Mg-C distances are 2.480(2) and 2.399(2) Å, and in the arene complex the shortest Mg-C bond length is 2.520(2) Å. Later study showed that the binding mode of arenes is sensitive to substitution on the arene, e.g., [(Dipp-NacNac)Mg(η6-mesitylene)][B(C6F5)4] features a η6-like mesitylene with Mg-C distance ranging from 2.5325(17) to 2.6988(16) Å.[67][68] The first intramolecular Mg-alkene binding was later identified in 2020.[69] In [(Dipp-NacNac)Mg(H2C=CEt2)][B(C6F5)4], Mg is closer to the terminal methylene with Mg-C distance of 2.338(2) Å, and the longer Mg-C distance is 2.944(5) Å. DFT calculations and AIM analysis[64][69][70] suggested that the Mg-alkene interaction is less covalent and should be mainly described as ion-induced dipole interactions, and the large asymmetry in the 2-ethylbutene complex should be attributed to charge distribution on the two sp2 carbon atoms.

Synthesis of cationic magnesium-π complexes using Dipp-NacNac scaffold[66][69]

Although [(C6H6)2Mg]2+ remains unknown, the isoelectronic boratabenzene complex has been synthesized by Herberich and co-workers in 2000.[71] In the work [(C5H5BMe)2Mg] and [(3,5-Me2C5H3BNMe2)2Mg] were characterized, with [(C5H5BMe)2Mg] having average Mg-C distance of 2.403 Å (2.359(2) to 2.453(2) Å) and [(3,5-Me2C5H3BNMe2)2Mg] having average Mg-C distance of 2.391 Å (2.350(1) to 2.429(2) Å). The slightly longer Mg-C distance compared to Cp2Mg indicates a weaker donor ability of the boratabenzene, likely due to a more dispersed electron density among six instead of five atoms. Similar to Cp2Mg derivatives, adding ligands like bipyridine (bipy) makes one of the boratabenzene slipped to form [(η5-3,5-Me2C5H3BNMe2) (η1-3,5-Me2C5H3BNMe2)Mg(bipy)], while coordination of THF changes the ligand to N-donor in [(N-3,5-Me2C5H3BNMe2)2Mg(THF)2].

Synthesis and reactivity of [(3,5-Me2C5H3BNMe2)2Mg][71]

Applications

[edit]

For the wide applications of Grignard reagents, please refer to the corresponding page.

The luminescence properties of magnesium compounds have been studied since the pioneering work by Chandrasekhar and co-workers in 2005, where a phosphorus-based tris-hydrazone complex of Mg(II) was synthesized and determined to have an intense fluorescence emission peak at 442 nm in dichloromethane solution.[72]

In 2018, Roesky and co-workers developed a diamidophosphine ligand, with the ligated dimagnesium(II) compound having a fluorescence quantum yield of 34% in the solution.[73] Munz and co-workers developed a pincer-like carbazole-mesoionic carbene ligand in 2021, delivering its magnesium complex a quantum yield of 14%.[74] In 2022, Sen and colleagues reported two 2,2′-pyridylpyrrolide supported magnesium complexes, one mononuclear and one dinuclear, with quantum yield of 14% and 22%, respectively.[75]

Catalytic systems for hydroboration reactions based on magnesium complexes have been investigated,[76] with the pioneering work by Hill in 2012, where a Nacnac supported magnesium(II) hydride dimer was used to catalyze the hydroboration of ketones.[77] Magnesium complexes have also been found to catalyze nucleophilic cyclization reactions.[78]

General catalytic cycle of magnesium catalyzed hydroboration reactions

Low-Oxidation State Magnesium Complexes[4][5][6][79]

[edit]

Main article: Low valent magnesium compounds

The first molecular Mg(I) compound, which contains a Mg-Mg bond, was synthesized by Jones, Stasch, and co-workers in 2007, from potassium metal reduction of Nacnac or priso ligand supported magnesium halide.[80] In the [(Dipp-Nacnac)Mg]2 the Mg-Mg distance is 2.8457(8) Å, and in the [(Dipp-NMe2Priso)Mg]2 (Dipp-NMe2Priso = [Me2NC(NDipp)2]-) the Mg-Mg distance is 2.8508(12) Å, both approximately equal to twice of the covalent radius of magnesium. In 2016, Jones and co-workers reported Mg(I) compounds with super bulky amido ligands, delivering a two-coordinate Mg(I).[81] In [{2,6-(Ph2CH)2-4-iPr-C6H2}Mg]2, the Mg-Mg distance of 2.8223(11) Å is significantly shorter than the N,N’-chelated Mg(I) dimers.

The first Mg(0) compound was reported in 2021 by Harder and co-workers, by reducing a similar Nacnac chelated in a harsher condition using newly prepared Na/NaCl.[82]

Example syntheses of Low-oxidation state magnesium complexes[80][81][82]

In 2010, Platts and co-workers characterized a non-nuclear attractor in the Mg-Mg bond of [(Dipp-Nacnac)Mg]2 from experimental electron density, which suggest the specialty of the Mg-Mg bond.[83]

Mg(I) compounds have been proven to be useful reductants in synthetic chemistry. They have been found to be doing reversible addition to C=C double bonds,[84] C-F bond activation,[85] CO reduction,[86][87] defluorination of PTFE,[88] and reduction of OCP-.[89]

See Also

[edit]

Magnesium compounds

Main group organometallic chemistry

Group 2 organometallic chemistry

Organoberyllium chemistry

Alkaline earth octacarbonyl complex

Organozinc chemistry

References

[edit]
  1. ^ Shannon, R. D. (1976-09-01). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides". Acta Crystallographica Section A. 32 (5): 751–767. Bibcode:1976AcCrA..32..751S. doi:10.1107/S0567739476001551.
  2. ^ Hill, Michael S.; Liptrot, David J.; Weetman, Catherine (2016). "Alkaline earths as main group reagents in molecular catalysis". Chemical Society Reviews. 45 (4): 972–988. doi:10.1039/C5CS00880H. PMID 26797470.
  3. ^ Seyferth, Dietmar (2009-03-23). "The Grignard Reagents". Organometallics. 28 (6): 1598–1605. doi:10.1021/om900088z.
  4. ^ a b Green, Shaun P.; Jones, Cameron; Stasch, Andreas (2007-12-14). "Stable Magnesium(I) Compounds with Mg-Mg Bonds". Science. 318 (5857): 1754–1757. Bibcode:2007Sci...318.1754G. doi:10.1126/science.1150856. PMID 17991827.
  5. ^ a b Rösch, Bastian; Harder, Sjoerd (2021). "New horizons in low oxidation state group 2 metal chemistry". Chemical Communications. 57 (74): 9354–9365. doi:10.1039/D1CC04147A. PMID 34528959.
  6. ^ a b Jones, Cameron (2020-11-06). "Open questions in low oxidation state group 2 chemistry". Communications Chemistry. 3 (1): 159. Bibcode:2020CmChe...3..159J. doi:10.1038/s42004-020-00408-8. PMID 36703461.
  7. ^ Grignard, Victor (1990). "Sur quelques nouvelles combinaisons organométalliques du magnésium et leur application à des synthèses d'alcools et d'hydrocarbures". Comptes rendus de l'Académie des Sciences. 130: 1322–1324.
  8. ^ Du, Chi Jen Frank; Hart, Harold; Ng, Kwok Keung Daniel (1986). "A one-pot synthesis of m-terphenyls, via a two-aryne sequence". The Journal of Organic Chemistry. 51 (16): 3162–3165. doi:10.1021/jo00366a016.
  9. ^ Saednya, Akbar; Hart, Harold (1996). "Two Efficient Routes to m-Terphenyls from 1,3-Dichlorobenzenes". Synthesis. 1996 (12): 1455–1458. doi:10.1055/s-1996-4426.
  10. ^ Krieck, Sven; Görls, Helmar; Yu, Lian; Reiher, Markus; Westerhausen, Matthias (2009-03-04). "Stable "Inverse" Sandwich Complex with Unprecedented Organocalcium(I): Crystal Structures of [(thf)2 Mg(Br)-C6 H2 -2,4,6-Ph3 ] and [(thf)3 Ca{μ-C6 H3 -1,3,5-Ph3 }Ca(thf)3 ]". Journal of the American Chemical Society. 131 (8): 2977–2985. doi:10.1021/ja808524y.
  11. ^ Guggenberger, Lloyd J.; Rundle, R. E. (1964). "The Structure of Ethylmagnesium Bromide Dietherate. An X-Ray Diffraction Study". Journal of the American Chemical Society. 86 (23): 5344–5345. Bibcode:1964JAChS..86.5344G. doi:10.1021/ja01077a068.
  12. ^ Guggenberger, L. J.; Rundle, R. E. (1968). "Crystal structure of the ethyl Grignard reagent, ethylmagnesium bromide dietherate". Journal of the American Chemical Society. 90 (20): 5375–5378. Bibcode:1968JAChS..90.5375G. doi:10.1021/ja01022a007.
  13. ^ Cordero, Beatriz; Gómez, Verónica; Platero-Prats, Ana E.; Revés, Marc; Echeverría, Jorge; Cremades, Eduard; Barragán, Flavia; Alvarez, Santiago (2008). "Covalent radii revisited". Dalton Transactions (21): 2832–2838. doi:10.1039/b801115j. PMID 18478144.
  14. ^ Jagirdar, Balaji R.; Murphy, Eamonn F.; Roesky, Herbert W. (1999). "Organometallic Fluorides of the Main Group Metals Containing the C—M—F Fragment". In Kenneth D. Karlin (ed.). Progress in Inorganic Chemistry. Vol. 48 (1 ed.). Wiley. pp. 351–455. doi:10.1002/9780470166499.ch4. ISBN 978-0-471-32623-6.
  15. ^ Ashby, E C.; Yu, Simon H.; Beach, Robert G. (1970). "The Preparation of Alkylmagnesium Fluroindes". Journal of the American Chemical Society. 92 (2): 433–435. Bibcode:1970JAChS..92..433A. doi:10.1021/ja00705a634.
  16. ^ Ashby, Eugene C.; Yu, Simon H. (1971). "Preparation of alkylmagnesium fluorides". The Journal of Organic Chemistry. 36 (15): 2123–2128. doi:10.1021/jo00814a019.
  17. ^ Peltzer, Raphael M.; Eisenstein, Odile; Nova, Ainara; Cascella, Michele (2017-04-27). "How Solvent Dynamics Controls the Schlenk Equilibrium of Grignard Reagents: A Computational Study of CH3 MgCl in Tetrahydrofuran". The Journal of Physical Chemistry B. 121 (16): 4226–4237. doi:10.1021/acs.jpcb.7b02716. PMID 28358509.
  18. ^ Peltzer, Raphael Mathias; Gauss, Jürgen; Eisenstein, Odile; Cascella, Michele (2020-02-12). "The Grignard Reaction – Unraveling a Chemical Puzzle". Journal of the American Chemical Society. 142 (6): 2984–2994. Bibcode:2020JAChS.142.2984P. doi:10.1021/jacs.9b11829. PMID 31951398.
  19. ^ Cope, Arthur C. (1935). "The Preparation of Dialkylmagnesium Compounds from Grignard Reagents". Journal of the American Chemical Society. 57 (11): 2238–2240. Bibcode:1935JAChS..57.2238C. doi:10.1021/ja01314a059.
  20. ^ Weiss, E. (1964). "Die kristallstruktur des dimethylmagnesiums". Journal of Organometallic Chemistry. 2 (4): 314–321. doi:10.1016/S0022-328X(00)82217-2.
  21. ^ Kennedy, Alan R.; Mulvey, Robert E.; Robertson, Stuart D. (2010). "N-Heterocyclic carbene stabilized adducts of alkyl magnesium amide, bisalkyl magnesium and Grignard reagents: trapping oligomeric organo s-block fragments with NHCs". Dalton Transactions. 39 (38): 9091–9099. doi:10.1039/c0dt00693a. PMID 20733980.
  22. ^ Wehmschulte, Rudolf. J.; Twamley, Brendan; Khan, Masood A. (2001-11-01). "Synthesis and Characterization of an Unsolvated Dimeric Diarylmagnesium Compound and Its Magnesium Iodide Byproducts". Inorganic Chemistry. 40 (23): 6004–6008. doi:10.1021/ic010513m. PMID 11681917.
  23. ^ a b Schumann, Herbert; Steffens, Alexandra; Hummert, Markus (2009). "Synthese, Röntgenstrukturanalyse und katalytische Aktivität neuer Erdalkalimetall-Alkinkomplexe". Zeitschrift für anorganische und allgemeine Chemie. 635 (6–7): 1041–1047. doi:10.1002/zaac.200900159.
  24. ^ Schumann, Herbert; Steffens, Alexandra; Hummert, Markus (2009). "Synthese, Röntgenstrukturanalyse und katalytische Aktivität neuer Erdalkalimetall-Alkinkomplexe". Zeitschrift für anorganische und allgemeine Chemie. 635 (6–7): 1041–1047. doi:10.1002/zaac.200900159.
  25. ^ Robertson, Stuart D.; Uzelac, Marina; Mulvey, Robert E. (2019-07-24). "Alkali-Metal-Mediated Synergistic Effects in Polar Main Group Organometallic Chemistry". Chemical Reviews. 119 (14): 8332–8405. doi:10.1021/acs.chemrev.9b00047. PMID 30888154.
  26. ^ Mulvey, Robert E. (2006-02-01). "Modern Ate Chemistry: Applications of Synergic Mixed Alkali-Metal−Magnesium or −Zinc Reagents in Synthesis and Structure Building". Organometallics. 25 (5): 1060–1075. doi:10.1021/om0510223.
  27. ^ Clegg, William; Henderson, Kenneth W.; Kennedy, Alan R.; Mulvey, Robert E.; O'Hara, Charles T.; Rowlings, René B.; Tooke, Duncan M. (2001-10-15). <3902::AID-ANIE3902>3.0.CO;2-T "Regioselective Tetrametalation of Ferrocene in a Single Reaction: Extension of s-Block Inverse Crown Chemistry to the d-Block". Angewandte Chemie International Edition. 40 (20): 3902–3905. doi:10.1002/1521-3773(20011015)40:20<3902::AID-ANIE3902>3.0.CO;2-T.
  28. ^ Andrikopoulos, Prokopis C.; Armstrong, David R.; Clegg, William; Gilfillan, Carly J.; Hevia, Eva; Kennedy, Alan R.; Mulvey, Robert E.; O'Hara, Charles T.; Parkinson, John A.; Tooke, Duncan M. (2004-09-01). "A Homologous Series of Regioselectively Tetradeprotonated Group 8 Metallocenes: New Inverse Crown Ring Compounds Synthesized via a Mixed Sodium−Magnesium Tris(diisopropylamide) Synergic Base". Journal of the American Chemical Society. 126 (37): 11612–11620. Bibcode:2004JAChS.12611612A. doi:10.1021/ja0472230. PMID 15366908.
  29. ^ a b Wang, Guanjun; Gong, Yu; Zhang, QingQing; Zhou, Mingfei (2010-10-14). "Formation and Characterization of Magnesium Bisozonide and Carbonyl Complexes in Solid Argon". The Journal of Physical Chemistry A. 114 (40): 10803–10809. Bibcode:2010JPCA..11410803W. doi:10.1021/jp107434f. PMID 20857987.
  30. ^ Sunil, K. K. (1992). "The nature of bonding and stability of beryllium carbonyl (CO)2Be-Be(CO)2: a molecule with a beryllium-beryllium double bond". Journal of the American Chemical Society. 114 (10): 3985–3986. Bibcode:1992JAChS.114.3985S. doi:10.1021/ja00036a061.
  31. ^ Andrews, Lester; Tague, Thomas J.; Kushto, Gary P.; Davy, Randall D. (1995). "Infrared Spectra of Beryllium Carbonyls from Reactions of Beryllium Atoms with Carbon Monoxide in Solid Argon". Inorganic Chemistry. 34 (11): 2952–2961. doi:10.1021/ic00115a024.
  32. ^ Wu, Xuan; Zhao, Lili; Jin, Jiaye; Pan, Sudip; Li, Wei; Jin, Xiaoyang; Wang, Guanjun; Zhou, Mingfei; Frenking, Gernot (2018-08-31). "Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals". Science. 361 (6405): 912–916. Bibcode:2018Sci...361..912W. doi:10.1126/science.aau0839. PMID 30166489.
  33. ^ a b Arduengo, Anthony J.; Dias, H.V.Rasika; Davidson, Fredric; Harlow, R.L. (1993). "Carbene adducts of magnesium and zinc". Journal of Organometallic Chemistry. 462 (1–2): 13–18. doi:10.1016/0022-328X(93)83336-T.
  34. ^ a b c Arduengo, Anthony J.; Davidson, Fredric; Krafczyk, Roland; Marshall, William J.; Tamm, Matthias (1998-07-01). "Adducts of Carbenes with Group II and XII Metallocenes". Organometallics. 17 (15): 3375–3382. doi:10.1021/om980438w.
  35. ^ a b Mungur, Shaheed A.; Liddle, Stephen T.; Wilson, Claire; Sarsfield, Mark J.; Arnold, Polly L. (2004). "Bent metal carbene geometries in amido N-heterocyclic carbene complexes". Chemical Communications (23): 2738–2739. doi:10.1039/b410074c. PMID 15568093.
  36. ^ a b Zhang, Dao; Kawaguchi, Hiroyuki (2006-10-01). "Deprotonation Attempts on Imidazolium Salt Tethered by Substituted Phenol and Construction of Its Magnesium Complex by Transmetalation". Organometallics. 25 (22): 5506–5509. doi:10.1021/om060691t.
  37. ^ Wong, Yuen Onn; Freeman, Lucas A.; Agakidou, A. Danai; Dickie, Diane A.; Webster, Charles Edwin; Gilliard, Robert J. (2019-02-11). "Two Carbenes versus One in Magnesium Chemistry: Synthesis of Terminal Dihalide, Dialkyl, and Grignard Reagents". Organometallics. 38 (3): 688–696. doi:10.1021/acs.organomet.8b00866.
  38. ^ a b Bruyere, Jean-Charles; Gourlaouen, Christophe; Karmazin, Lydia; Bailly, Corinne; Boudon, Corinne; Ruhlmann, Laurent; De Frémont, Pierre; Dagorne, Samuel (2019-07-22). "Synthesis and Characterization of Neutral and Cationic Magnesium Complexes Supported by NHC Ligands". Organometallics. 38 (14): 2748–2757. doi:10.1021/acs.organomet.9b00304.
  39. ^ a b Obi, Akachukwu D.; Machost, Haleigh R.; Dickie, Diane A.; Gilliard, Robert J. (2021-08-16). "A Thermally Stable Magnesium Phosphaethynolate Grignard Complex". Inorganic Chemistry. 60 (16): 12481–12488. doi:10.1021/acs.inorgchem.1c01700. PMID 34346670.
  40. ^ Benkeser, Robert A. (1971). "The Chemistry of Allyl and Crotyl Grignard Reagents". Synthesis. 1971 (7): 347–358. doi:10.1055/s-1971-21738.
  41. ^ Bartolo, Nicole D.; Read, Jacquelyne A.; Valentín, Elizabeth M.; Woerpel, K. A. (2020-02-12). "Reactions of Allylmagnesium Reagents with Carbonyl Compounds and Compounds with C═N Double Bonds: Their Diastereoselectivities Generally Cannot Be Analyzed Using the Felkin–Anh and Chelation-Control Models". Chemical Reviews. 120 (3): 1513–1619. doi:10.1021/acs.chemrev.9b00414. PMC 7018623. PMID 31904936.
  42. ^ Marsch, Michael; Harms, Klaus; Massa, Werner; Boche, Gernot (1987). "Crystal Structure of the η1 -Allyl-Grignard Compound Bis(allylmagnesium chloride-TMEDA)". Angewandte Chemie International Edition in English. 26 (7): 696–697. doi:10.1002/anie.198706961.
  43. ^ Vestergren, Marcus; Eriksson, Johan; Håkansson, Mikael (2003). "Chiral cis-octahedral Grignard reagents". Journal of Organometallic Chemistry. 681 (1–2): 215–224. doi:10.1016/S0022-328X(03)00616-8.
  44. ^ Lichtenberg, Crispin; Spaniol, Thomas P.; Peckermann, Ilja; Hanusa, Timothy P.; Okuda, Jun (2013-01-16). "Cationic, Neutral, and Anionic Allyl Magnesium Compounds: Unprecedented Ligand Conformations and Reactivity Toward Unsaturated Hydrocarbons". Journal of the American Chemical Society. 135 (2): 811–821. Bibcode:2013JAChS.135..811L. doi:10.1021/ja310112e. PMID 23240932.
  45. ^ Hutchison, D. A.; Beck, K. R.; Benkeser, R. A.; Grutzner, J. B. (1973). "Structure of allylic Grignard reagents". Journal of the American Chemical Society. 95 (21): 7075–7082. Bibcode:1973JAChS..95.7075H. doi:10.1021/ja00802a031.
  46. ^ Benn, Reinhard; Lehmkuhl, Herbert; Mehler, Klaus; Rufinska, Anna (1985). "Metallotropie des allylmagnesiums; Struktur und NMR-linienformanalyse von cyclopentadienyl(2-methylallyl)-magnesium". Journal of Organometallic Chemistry. 293 (1): 1–6. doi:10.1016/0022-328X(85)80239-4.
  47. ^ Alexander Hill, E; Boyd, Winston A; Desai, Hemnalini; Darki, Amir; Bivens, Lymel (1996). "Infrared and nuclear magnetic resonance spectroscopic studies of the structure and dynamics of allylic magnesium compounds". Journal of Organometallic Chemistry. 514 (1–2): 1–11. doi:10.1016/0022-328X(95)06014-N.
  48. ^ a b Chmely, Stephen C.; Carlson, Christin N.; Hanusa, Timothy P.; Rheingold, Arnold L. (2009-05-13). "Classical versus Bridged Allyl Ligands in Magnesium Complexes: The Role of Solvent". Journal of the American Chemical Society. 131 (18): 6344–6345. Bibcode:2009JAChS.131.6344C. doi:10.1021/ja900998t. PMID 19382790.
  49. ^ a b Bailey, Philip J.; Liddle, Stephen T.; Morrison, Carole A.; Parsons, Simon (2001-12-03). <4463::AID-ANIE4463>3.0.CO;2-2 "The First Alkaline Earth Metal Complex Containing a μ-η1:η1 Allyl Ligand: Structure of [{HC[C(tBu)NC6H3(CHMe2)2]2Mg(C3H5)}6] The financial support of the UK EPSRC (S.T.L., S.P.) and The Royal Society (C.A.M.) is gratefully acknowledged". Angewandte Chemie International Edition. 40 (23): 4463–4466. doi:10.1002/1521-3773(20011203)40:23<4463::AID-ANIE4463>3.0.CO;2-2. PMID 12404446.
  50. ^ Wilkinson, Geoffrey; Cotton, F. Albert CYCLOPENTADIENYL COMPOUNDS OF MANGANESE AND MAGNESIUM; United States, 1954. https://www.osti.gov/biblio/4371627.
  51. ^ Weiss, E.; Fischer, E. O. (1955). "Zur Kristallstruktur der Di-cyclopentadienyl-verbindungen des zweiwertigen Magnesiums und Vanadins". Zeitschrift für anorganische und allgemeine Chemie. 278 (3–4): 219–224. doi:10.1002/zaac.19552780313.
  52. ^ Bünder, Wolfgang; Weiss, Erwin (1975). "Verfeinerung der kristallstruktur von dicyclopentadienylmagnesium, (η-C5H5)2Mg". Journal of Organometallic Chemistry. 92 (1): 1–6. doi:10.1016/S0022-328X(00)91094-5.
  53. ^ Haaland, Arne; Lusztyk, Janusz; Brunvoll, Jon; Starowieyski, Kazimierz B. (1975). "On the molecular structure of dicyclopentadienylmagnesium". Journal of Organometallic Chemistry. 85 (3): 279–285. doi:10.1016/S0022-328X(00)80301-0.
  54. ^ Morley, C. P.; Jutzi, P.; Krueger, C.; Wallis, J. M. (1987). "[.eta.5-Tris(trimethylsilyl)cyclopentadienyl]magnesium compounds: syntheses and structures". Organometallics. 6 (5): 1084–1090. doi:10.1021/om00148a029.
  55. ^ Benn, Reinhard; Lehmkuhl, Herbert; Mehler, Klaus; Rufińska, Anna (1984). "25 Mg-NMR: A Method for the Characterization of Organomagnesium Compounds, their Complexes, and Schlenk Equilibria". Angewandte Chemie International Edition in English. 23 (7): 534–535. doi:10.1002/anie.198405341.
  56. ^ Faegri, K.; Almlöf, J.; Lüth, H.P. (1983). "The geometry and bonding of magnesocene. An AB-initio MO-LCAO investigation". Journal of Organometallic Chemistry. 249 (2): 303–313. doi:10.1016/S0022-328X(00)99429-4.
  57. ^ a b Bond, Andrew D.; Layfield, Richard A.; MacAllister, Judith A.; Rawson, Jeremy M.; Wright, Dominic S.; McPartlin, Mary (2001). "The first observation of the [Cp3Mn]– anion; structures of hexagonal [(η2-Cp)3MnK·1.5thf] and ion-separated [(η2-Cp)3Mn]2[Mg(thf)6]·2thf". Chemical Communications (19): 1956–1957. doi:10.1039/b106366a. PMID 12240237.
  58. ^ Schumann, Herbert; Gottfriedsen, Jochen; Glanz, Mario; Dechert, Sebastian; Demtschuk, Jörg (2001). "Metallocenes of the alkaline earth metals and their carbene complexes". Journal of Organometallic Chemistry. 617–618: 588–600. doi:10.1016/S0022-328X(00)00684-7.
  59. ^ Ramsden, H. E. Magnesium and Tin Derivatives of Fusedring Hydrocarbons and the Preparation Thereof. US3354190A, November 21, 1967. https://patents.google.com/patent/US3354190A/en (accessed 2024-11-19).
  60. ^ Bogdanović, Borislav; Janke, Nikolaus; Krüger, Carl; Mynott, Richard; Schlichte, Klaus; Westeppe, Uwe (1985). "Synthesis and Structure of 1,4-Dimethylanthracenemagnesium·3thf and μ-Trichlorodimagnesium·6thf(1+) Anthracenide". Angewandte Chemie International Edition in English. 24 (11): 960–961. doi:10.1002/anie.198509601.
  61. ^ Engelhardt, Lutz M.; Harvey, Stephen; Raston, Colin L.; White, Allan H. (1988). "Organo-magnesium reagents: the crystal structures of [Mg(anthracene)(THF)3] and [Mg(triphenylmethyl)Br(OEt2)2]". Journal of Organometallic Chemistry. 341 (1–3): 39–51. doi:10.1016/0022-328X(88)89061-2.
  62. ^ Bogdanovic, Borislav (1988-07-01). "Magnesium anthracene systems and their application in synthesis and catalysis". Accounts of Chemical Research. 21 (7): 261–267. doi:10.1021/ar00151a002.
  63. ^ a b Velian, Alexandra; Cummins, Christopher C. (2012-08-29). "Facile Synthesis of Dibenzo-7λ3 -phosphanorbornadiene Derivatives Using Magnesium Anthracene". Journal of the American Chemical Society. 134 (34): 13978–13981. doi:10.1021/ja306902j. PMID 22894133.
  64. ^ a b c d Freitag, Benjamin; Elsen, Holger; Pahl, Jürgen; Ballmann, Gerd; Herrera, Alberto; Dorta, Romano; Harder, Sjoerd (2017-05-08). "s-Block Metal Dibenzoazepinate Complexes: Evidence for Mg–Alkene Encapsulation". Organometallics. 36 (9): 1860–1866. doi:10.1021/acs.organomet.7b00200.
  65. ^ Fujita, Megumi; Lightbody, Owen C.; Ferguson, Michael J.; McDonald, Robert; Stryker, Jeffrey M. (2009-04-08). "Quasi-Planar Homopolymetallic and Heteropolymetallic Coordination Arrays. Surface-Like Molecular Clusters of Magnesium and Aluminum". Journal of the American Chemical Society. 131 (13): 4568–4569. Bibcode:2009JAChS.131.4568F. doi:10.1021/ja8093229. PMID 19290634.
  66. ^ a b Pahl, Jürgen; Brand, Steffen; Elsen, Holger; Harder, Sjoerd (2018). "Highly Lewis acidic cationic alkaline earth metal complexes". Chemical Communications. 54 (63): 8685–8688. doi:10.1039/C8CC04083D. PMID 29892727.
  67. ^ Pahl, Jürgen; Friedrich, Alexander; Elsen, Holger; Harder, Sjoerd (2018-09-10). "Cationic Magnesium π–Arene Complexes". Organometallics. 37 (17): 2901–2909. doi:10.1021/acs.organomet.8b00489.
  68. ^ Friedrich, Alexander; Pahl, Jürgen; Elsen, Holger; Harder, Sjoerd (2019). "Bulky cationic β-diketiminate magnesium complexes". Dalton Transactions. 48 (17): 5560–5568. doi:10.1039/C8DT03576H. PMID 30566138.
  69. ^ a b c Thum, Katharina; Friedrich, Alexander; Pahl, Jürgen; Elsen, Holger; Langer, Jens; Harder, Sjoerd (2021). "Unsupported Mg–Alkene Bonding". Chemistry – A European Journal. 27 (7): 2513–2522. doi:10.1002/chem.202004716. PMC 7898539. PMID 33197075.
  70. ^ Martin, Johannes; Langer, Jens; Wiesinger, Michael; Elsen, Holger; Harder, Sjoerd (2020-07-23). "Dibenzotropylidene Substituted Ligands for Early Main Group Metal-Alkene Bonding". European Journal of Inorganic Chemistry. 2020 (27): 2582–2595. doi:10.1002/ejic.202000524.
  71. ^ a b Zheng, Xiaolai; Englert, Ulli; Herberich, Gerhard E.; Rosenplänter, Jörg (2000-12-01). "Syntheses and Structures of Mg(C5 H5 BMe)2 , Mg(3,5-Me2 C5 H3 BNMe2 )2 , the 2,2'-Bipyridine Adduct Mg(C5 H5 BMe)2 (bipy), and the N-Bonded Aminoboratabenzene Species Mg(3,5-Me2 C5 H3 BNMe2 )2 (THF)21". Inorganic Chemistry. 39 (25): 5579–5585. doi:10.1021/ic000575x. PMID 11151358.
  72. ^ Chandrasekhar, Vadapalli; Azhakar, Ramachandran; Bickley, Jamie F.; Steiner, Alexander (2005). "A luminescent linear trinuclear magnesium complex assembled from a phosphorus-based tris-hydrazone ligand". Chemical Communications (4): 459–461. doi:10.1039/b414353a.
  73. ^ Bestgen, Sebastian; Schoo, Christoph; Neumeier, B. Lilli; Feuerstein, Thomas J.; Zovko, Christina; Köppe, Ralf; Feldmann, Claus; Roesky, Peter W. (2018-10-22). "Intensely Photoluminescent Diamidophosphines of the Alkaline-Earth Metals, Aluminum, and Zinc". Angewandte Chemie International Edition. 57 (43): 14265–14269. doi:10.1002/anie.201806943. PMID 30040153.
  74. ^ Pinter, Piermaria; Schüßlbauer, Christoph M.; Watt, Fabian A.; Dickmann, Nicole; Herbst-Irmer, Regine; Morgenstern, Bernd; Grünwald, Annette; Ullrich, Tobias; Zimmer, Michael; Hohloch, Stephan; Guldi, Dirk M.; Munz, Dominik (2021). "Bright luminescent lithium and magnesium carbene complexes". Chemical Science. 12 (21): 7401–7410. doi:10.1039/D1SC00846C. PMC 8171342. PMID 34163830.
  75. ^ Kumar, Rohit; Pahar, Sanjukta; Chatterjee, Joy; Dash, Soumya Ranjan; Gonnade, Rajesh G.; Vanka, Kumar; Sen, Sakya S. (2022). "Luminescent magnesium complexes with intra- and inter-ligand charge transfer". Chemical Communications. 58 (84): 11843–11846. doi:10.1039/D2CC04142A. PMID 36193808.
  76. ^ Magre, Marc; Szewczyk, Marcin; Rueping, Magnus (2022-05-11). "s-Block Metal Catalysts for the Hydroboration of Unsaturated Bonds". Chemical Reviews. 122 (9): 8261–8312. doi:10.1021/acs.chemrev.1c00641. PMC 9100617. PMID 35254061.
  77. ^ Arrowsmith, Merle; Hadlington, Terrance J.; Hill, Michael S.; Kociok-Köhn, Gabriele (2012). "Magnesium-catalysed hydroboration of aldehydes and ketones". Chemical Communications. 48 (38): 4567. doi:10.1039/c2cc30565h. PMID 22473045.
  78. ^ Kumar, Rohit; Mahata, Biplab; Gayathridevi, S.; Vipin Raj, K.; Vanka, Kumar; Sen, Sakya S. (2024-01-16). "Lanthanide Mimicking by Magnesium for Oxazolidinone Synthesis". Chemistry – A European Journal. 30 (4): –202303478. doi:10.1002/chem.202303478. PMID 37897110.
  79. ^ Freeman, Lucas A.; Walley, Jacob E.; Gilliard, Robert J. (2022-06-02). "Synthesis and reactivity of low-oxidation-state alkaline earth metal complexes". Nature Synthesis. 1 (6): 439–448. Bibcode:2022NatSy...1..439F. doi:10.1038/s44160-022-00077-6.
  80. ^ a b Green, Shaun P.; Jones, Cameron; Stasch, Andreas (2007-12-14). "Stable Magnesium(I) Compounds with Mg-Mg Bonds". Science. 318 (5857): 1754–1757. Bibcode:2007Sci...318.1754G. doi:10.1126/science.1150856. PMID 17991827.
  81. ^ a b Boutland, Aaron J.; Dange, Deepak; Stasch, Andreas; Maron, Laurent; Jones, Cameron (2016). "Two-Coordinate Magnesium(I) Dimers Stabilized by Super Bulky Amido Ligands". Angewandte Chemie International Edition. 55 (32): 9239–9243. doi:10.1002/anie.201604362. hdl:10023/11007. PMID 27303934.
  82. ^ a b Rösch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Harder, S. (2021-04-29). "Strongly reducing magnesium(0) complexes". Nature. 592 (7856): 717–721. Bibcode:2021Natur.592..717R. doi:10.1038/s41586-021-03401-w. PMID 33911274.
  83. ^ Platts, James A.; Overgaard, Jacob; Jones, Cameron; Iversen, Bo B.; Stasch, Andreas (2011-01-20). "First Experimental Characterization of a Non-nuclear Attractor in a Dimeric Magnesium(I) Compound". The Journal of Physical Chemistry A. 115 (2): 194–200. Bibcode:2011JPCA..115..194P. doi:10.1021/jp109547w. PMID 21158464.
  84. ^ Boutland, Aaron J.; Carroll, Ashlea; Alvarez Lamsfus, Carlos; Stasch, Andreas; Maron, Laurent; Jones, Cameron (2017-12-20). "Reversible Insertion of a C═C Bond into Magnesium(I) Dimers: Generation of Highly Active 1,2-Dimagnesioethane Compounds". Journal of the American Chemical Society. 139 (50): 18190–18193. Bibcode:2017JAChS.13918190B. doi:10.1021/jacs.7b11368. hdl:10023/16628. PMID 29206455.
  85. ^ Bakewell, Clare; Ward, Bryan J.; White, Andrew J. P.; Crimmin, Mark R. (2018). "A combined experimental and computational study on the reaction of fluoroarenes with Mg–Mg, Mg–Zn, Mg–Al and Al–Zn bonds". Chemical Science. 9 (8): 2348–2356. doi:10.1039/C7SC05059C. PMC 5897846. PMID 29719707.
  86. ^ Yuvaraj, K.; Douair, Iskander; Paparo, Albert; Maron, Laurent; Jones, Cameron (2019-06-05). "Reductive Trimerization of CO to the Deltate Dianion Using Activated Magnesium(I) Compounds". Journal of the American Chemical Society. 141 (22): 8764–8768. Bibcode:2019JAChS.141.8764Y. doi:10.1021/jacs.9b04085. PMID 31096751.
  87. ^ Liu, Han-Ying; Schwamm, Ryan J.; Neale, Samuel E.; Hill, Michael S.; McMullin, Claire L.; Mahon, Mary F. (2021-10-27). "Reductive Dimerization of CO by a Na/Mg(I) Diamide". Journal of the American Chemical Society. 143 (42): 17851–17856. Bibcode:2021JAChS.14317851L. doi:10.1021/jacs.1c09467. PMC 8554760. PMID 34652134.
  88. ^ Sheldon, Daniel J.; Parr, Joseph M.; Crimmin, Mark R. (2023-05-17). "Room Temperature Defluorination of Poly(tetrafluoroethylene) by a Magnesium Reagent". Journal of the American Chemical Society. 145 (19): 10486–10490. Bibcode:2023JAChS.14510486S. doi:10.1021/jacs.3c02526. PMC 10197119. PMID 37154713.
  89. ^ Wannipurage, Duleeka C.; Yang, Eric S.; Chivington, Austin D.; Fletcher, Jess; Ray, Debanik; Yamamoto, Nobuyuki; Pink, Maren; Goicoechea, Jose M.; Smith, Jeremy M. (2024-10-02). "A Transient Iron Carbide Generated by Cyaphide Cleavage". Journal of the American Chemical Society. 146 (39): 27173–27178. Bibcode:2024JAChS.14627173W. doi:10.1021/jacs.4c10704. PMID 39287969.