From Wikipedia, the free encyclopedia
Jump to: navigation, search
Skeletal formula and numbering system of anthracene
Ball-and-stick model of the anthracene molecule
IUPAC names
120-12-7 YesY
ChEBI CHEBI:35298 YesY
ChEMBL ChEMBL333179 YesY
ChemSpider 8111 YesY
DrugBank DB07372 YesY
EC number 217-004-5
Jmol-3D images Image
KEGG C14315 YesY
PubChem 8418
RTECS number CA9350000
Molar mass 178.23 g·mol−1
Appearance Colorless
Odor Weak aromatic
Density 1.28 g/cm3 (25 °C)[1]
0.969 g/cm3 (220 °C)
Melting point 215.76 °C (420.37 °F; 488.91 K)
at 760 mmHg[1]
Boiling point 339.9 °C (643.8 °F; 613.0 K)
at 760 mmHg[1]
0.022 mg/L (0 °C)
0.044 mg/L (25 °C)
0.287 mg/L (50 °C)
0.00045% w/w (100 °C, 3.9 MPa)[1]
Solubility Soluble in alcohol, (C2H5)2O, acetone, C6H6, CHCl3,[1] CS2[2]
Solubility in ethanol 0.076 g/100 g (16 °C)
1.9 g/100 g (19.5 °C)
0.328 g/100 g (25 °C)[2]
Solubility in methanol 1.8 g/100 g (19.5 °C)[2]
Solubility in hexane 0.37 g/100 g[2]
Solubility in toluene 0.92 g/100 g (16.5 °C)
12.94 g/100 g (100 °C)[2]
Solubility in carbon tetrachloride 0.732 g/100 g[2]
log P 4.56[1]
Vapor pressure 0.01 kPa (125.9 °C)
0.1 kPa (151.5 °C)[1]
13.4 kPa (250 °C)[3]
0.039 L·atm/mol[1]
UV-vismax) 345.6 nm, 363.2 nm[3]
Thermal conductivity 0.1416 W/m·K (240 °C)
0.1334 W/m·K (270 °C)
0.1259 W/m·K (300 °C)[4]
Viscosity 0.602 cP (240 °C)
0.498 cP (270 °C)
0.429 cP (300 °C)[4]
Monoclinic (290 K)[5]
a = 8.562 Å, b = 6.038 Å, c = 11.184 Å[5]
α = 90°, β = 124.7°, γ = 90°
210.5 J/mol·K[1][3]
207.5 J/mol·K[1][3]
129.2 kJ/mol[1][3]
7061 kJ/mol[3]
GHS pictograms The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The environment pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)[6]
GHS signal word Warning
H315, H319, H335, H410[6]
P261, P273, P305+351+338, P501[6]
EU classification Irritant Xi Dangerous for the Environment (Nature) N
R-phrases R36/37/38, R50/53
S-phrases S26, S60, S61
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 121 °C (250 °F; 394 K)[6]
540 °C (1,004 °F; 813 K)[6]
Lethal dose or concentration (LD, LC):
4900 mg/kg (rats, oral)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 YesY verify (what isYesY/N?)
Infobox references

Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400-500 nm peak) fluorescence under ultraviolet light.[8]

Occurrence and production[edit]

Coal tar, which contains around 1.5% anthracene, remains a major source of this material. Common impurities are phenanthrene and carbazole. A classic laboratory method for the preparation of anthracene is by cyclodehydration of o-methyl- or o-methylene-substituted diarylketones in the so-called Elbs reaction.

It may also occur in the interstellar medium.[9] More than 20% of the carbon in the universe may be associated with PAHs, including anthracene.[10]


Anthracene photodimerizes by the action of UV light:

Anthracene dimer

The dimer, called dianthracene (or sometimes paranthracene), is connected by a pair of new carbon-carbon bonds, the result of the [4+4] cycloaddition. It reverts to anthracene thermally or with UV irradiation below 300 nm. Substituted anthracene derivatives behave similarly. The reaction is affected by the presence of oxygen.[11][12]

Reduction of anthracene with alkali metals yields the deeply colored radical anion salts M+[anthracene]- (M = Li, Na, K). Hydrogenation gives 9,10-dihydroanthracene, preserving the aromaticity of the two flanking rings.

Chemical oxidation occurs readily, giving anthraquinone, C14H8O2 (below), for example using hydrogen peroxide and vanadyl acetylacetonate.[13]


Anthracene also reacts with dienophile singlet oxygen in a [4+2]-cycloaddition (Diels–Alder reaction):

Diels alder reaction of anthracene with singlet oxygen


Anthracene is converted mainly to anthroquinone, a precursor to dyes.[14]


Anthracene, a wide band-gap organic semiconductor is used as a scintillator for detectors of high energy photons, electrons and alpha particles. Plastics, such as polyvinyltoluene, can be doped with anthracene to produce a plastic scintillator that is approximately water-equivalent for use in radiation therapy dosimetry. Anthracene's emission spectrum peaks at between 400 nm and 440 nm.

It is also used in wood preservatives, insecticides, and coating materials.[citation needed]

Anthracene is one of the three components (the other two being potassium perchlorate and sulfur) which are used to produce the black smoke released during a Papal Conclave.[15]


A variety of anthracene derivatives find specialized uses. Derivatives having a hydroxyl group are 1-hydroxyanthracene and 2-hydroxyanthracene, homologous to phenol and naphthols, and hydroxyanthracene (also called anthrol, and anthracenol)[16][17] are pharmacologically active. Anthracene may also be found with multiple hydroxyl groups, as in 9,10-dihydroxyanthracene.


Unlike many other polycyclic aromatic hydrocarbons (PAH), anthracene is not classified as carcinogenic as listed by the U.S. agency OSHA.[18] Anthracene, as many other PAHs, is generated during combustion processes: Exposure to humans happens mainly through tobacco smoke and ingestion of food contaminated with combustion products.[19]

See also[edit]


  1. ^ a b c d e f g h i j k Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4200-9084-0. 
  2. ^ a b c d e f Seidell, Atherton; Linke, William F. (1919). Solubilities of Inorganic and Organic Compounds (2nd ed.). New York: D. Van Nostrand Company. p. 81. 
  3. ^ a b c d e f Anthracene in Linstrom, P.J.; Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD. (retrieved 2014-06-22)
  4. ^ a b "Properties of Anthracene". Wiley Information Services GmbH. Retrieved 2014-06-22. 
  5. ^ a b c d Douglas, Bodie E.; Ho, Shih-Ming (2007). Structure and Chemistry of Crystalline Solids. New York: Springer Science+Business Media, Inc. p. 289. ISBN 0-387-26147-8. 
  6. ^ a b c d e Sigma-Aldrich Co., Anthracene. Retrieved on 2014-06-22.
  7. ^ a b "MSDS of Anthracene". Fisher Scientific. Retrieved 2014-06-22. 
  8. ^ Jonathan Lindsey and coworkers. "Anthracene". PhotochemCAD. Retrieved 20 February 2014. 
  9. ^ Iglesias-Groth, S.; Manchado, A.; Rebolo, R.; Gonzalez Hernandez, J. I.; Garcia-Hernandez, D. A.; Lambert, D. L. (May 2010). "A search for interstellar anthracene toward the Perseus anomalous microwave emission region". arXiv:1005.4388. Bibcode:2010MNRAS.407.2157I. doi:10.1111/j.1365-2966.2010.17075.x. 
  10. ^ Hoover, Rachel (February 21, 2014). "Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That". NASA. Retrieved February 22, 2014. 
  11. ^ Rickborn, Bruce "The retro-Diels-Alder reaction. Part I. C-C dienophiles" Organic Reactions 1998, vol. 52. doi:10.1002/0471264180.or052.01
  12. ^ Bouas-Laurent, Henri; Desvergne, Jean-Pierre; Castellan, Alain; Lapouyade, Rene "Photodimerization of anthracenes in fluid solution: structural aspects" Chemical Society Reviews (2000), vol. 29, pp. 43-55. doi:10.1039/a801821i
  13. ^ Kimberly D. M. Charleton, Ernest M. Prokopchuk Coordination Complexes as Catalysts: The Oxidation of Anthracene by Hydrogen Peroxide in the Presence of VO(acac)2 Journal of Chemical Education 2011 88 (8), 1155-1157 doi:10.1021/ed100843a
  14. ^ Gerd Collin, Hartmut Höke and Jörg Talbiersky "Anthracene" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2006. doi:10.1002/14356007.a02_343.pub2
  15. ^ Vatican Radio, Briefing by Fr. Federico Lombardi, 03/13/2013, 1 p.m. CET.
  16. ^ 1-Hydroxyanthracene NIST datapage
  17. ^ 2-Hydroxyanthracene NIST datapage
  18. ^ MSDS
  19. ^
  20. ^ Wilson, Elizabeth K. (September 27, 2005). "Molecules Take A Walk - Unidirectional motion gives researchers control important for molecular machines, self-assembly". C&EN 83 (40). Retrieved November 5, 2014. 

External links[edit]