Einstein–Brillouin–Keller method

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Einstein–Brillouin–Keller method (EBK) is a semiclassical method (named for Albert Einstein, Léon Brillouin, and Joseph B. Keller) used to compute eigenvalues in quantum mechanical systems.[1] There have been a number of recent results on computational issues related to this topic, for example, the work of Eric J. Heller and Emmanuel David Tannenbaum using a partial differential equation gradient descent approach.[2]

See also[edit]


  1. ^ Stone, A.D. (August 2005). "Einstein's unknown insight and the problem of quantizing chaos". Physics Today. 58 (8): 37–43. Bibcode:2005PhT....58h..37S. doi:10.1063/1.2062917. 
  2. ^ Tannenbaum, E.D.; Heller, E. (2001). "Semiclassical Quantization Using Invariant Tori: A Gradient-Descent Approach". Journal of Physical Chemistry A. 105: 2801–2813.