Faltings height

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, the Faltings height of an abelian variety defined over a number field is a measure of its arithmetic complexity. It was introduced by Faltings (1983) in his proof of the Mordell conjecture.

See also[edit]


  • Cornell, Gary; Silverman, Joseph H. (1986). Arithmetic geometry. New York: Springer. ISBN 0387963111.  → Contains an English translation of Faltings (1983)
  • Faltings, Gerd (1983). "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern" [Finiteness theorems for abelian varieties over number fields]. Inventiones Mathematicae (in German). 73 (3): 349–366. doi:10.1007/BF01388432. MR 0718935.