HR 8799 e

Coordinates: Sky map 23h 07m 28.7150s, +21° 08′ 03.302″
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by JCW-CleanerBot (talk | contribs) at 19:00, 6 April 2018 (→‎top: task, replaced: journal=PASP → journal=Publications of the Astronomical Society of the Pacific using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:Planetbox begin Template:Planetbox image Template:Planetbox star Template:Planetbox separation Template:Planetbox orbit Template:Planetbox character Template:Planetbox discovery Template:Planetbox catalog Template:Planetbox reference Template:Planetbox end

HR 8799 e is a large exoplanet, orbiting the star HR 8799, which lies 129 lightyears from Earth. This gas giant is between 5 and 10 times the mass of Jupiter,[1] the largest planet in the Solar System. Due to their young age and high temperature all four discovered planets in the HR 8799 system are large, compared to all gas giants in the Solar System.

Description

HR 8799 e is the fourth planet orbiting HR 8799 in order of discovery. It is a young, hot and massive gas giant, and is fairly close to its star, lying just between the orbits of Saturn and Uranus in the Solar System. The planet is still glowing red hot.[1]

HR 8799 e is the innermost known planet as it orbits closer to its star than the other three known planets in this planetary system. This planet orbits at an estimated distance of 14.5 AU based on the relationship between angular separation measured by direct imaging observations and the star's distance from Earth. The estimated period of this planet if the orbit is face-on is about 50 years.[1]

Discovery

A team of researchers led by Christian Marois at the National Research Council's Herzberg Institute of Astrophysics identified the planet from data taken in 2009 and 2010 using the W.M. Keck Observatory in the K and L spectral bands.[1] They announced their findings on November 22, 2010. A separate work reporting the detection of HR 8799 e, led by Thayne Currie and using the Very Large Telescope, was made public six weeks later.[2] Observations obtained since then with the Large Binocular Telescope show that HR 8799 e has a spectrum and temperature similar to HR 8799 c and d.[3]

Spectra

Near infrared spectroscopy from 995 to 1769 nanometers made with the Palomar Obervatory show evidence of Methane and Acetylene but no Ammonia or Carbon Dioxide. There is currently no explanation why this planet shows strong methane absorption, but the other 3 planets in this system do not, despite all 4 planets having similar atmospheric temperatures.[4]

Notes

References

  1. ^ a b c d Cite error: The named reference Marois2011 was invoked but never defined (see the help page).
  2. ^ Currie, Thayne; et al. (March 2011). "A Combined Subaru/VLT/MMT 1--5 Micron Study of Planets Orbiting HR 8799: Implications for Atmospheric Properties, Masses, and Formation". The Astrophysical Journal. 729 (2): 128. arXiv:1101.1973. Bibcode:2011ApJ...729..128C. doi:10.1088/0004-637x/729/2/128.
  3. ^ Skemer, Andrew; et al. (July 2012). "First Light LBT AO Images of HR 8799 bcde at 1.6 and 3.3 μm: New Discrepancies between Young Planets and Old Brown Dwarfs". The Astrophysical Journal. 753 (1): 14. arXiv:1203.2615. Bibcode:2012ApJ...753...14S. doi:10.1088/0004-637x/753/1/14.
  4. ^ Oppenheimer, B. R. (2013). "Reconnaissance of the HR 8799 Exosolar System I: Near IR Spectroscopy". The Astrophysical Journal. 768: 24. arXiv:1303.2627. Bibcode:2013ApJ...768...24O. doi:10.1088/0004-637X/768/1/24.

External links