Jump to content

Hydroxylammonium nitrate

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by GreenC bot (talk | contribs) at 04:31, 5 September 2016 (WaybackMedic 2). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Hydroxylammonium nitrate
Names
Other names
hydroxylamine nitrate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.342 Edit this at Wikidata
EC Number
  • 236-691-2
  • InChI=1S/NO3.H4NO/c2-1(3)4;1-2/h;2H,1H3/q-1;+1 checkY
    Key: CRJZNQFRBUFHTE-UHFFFAOYSA-N checkY
  • InChI=1/NO3.H4NO/c2-1(3)4;1-2/h;2H,1H3/q-1;+1
    Key: CRJZNQFRBUFHTE-UHFFFAOYAP
  • [NH3+]O.[N+](=O)([O-])[O-]
Properties
H4N2O4
Molar mass 96.04 g/mol
Density 1.84 g/cm3
Melting point 48 °C
Soluble
Hazards
Safety data sheet (SDS) External MSDS (as 18 % solution)
Related compounds
Other anions
Hydroxylammonium sulfate
Hydroxylammonium chloride
Other cations
Ammonium nitrate
Related compounds
Hydroxylamine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Hydroxylammonium nitrate or hydroxylamine nitrate (HAN) is an inorganic compound with the chemical formula NH3OHNO3. It is a salt derived from hydroxylamine and nitric acid. In its pure form, it is a colourless hygroscopic solid. It has potential to be used as a rocket propellant either as a solution in monopropellants or bipropellants.[1]

Properties

The compound is a salt with separated hydroxyammonium and nitrate ions.[2] Hydroxylammonium nitrate is unstable because it contains both a reducing agent (hydroxylammonium cation) and an oxidizer (nitrate),[3] the situation being analogous to ammonium nitrate. It is usually handled as an aqueous solution. The solution is corrosive and toxic, and may be carcinogenic. Solid HAN is unstable, particularly in the presence of trace amounts of metal salts.

Applications

HAN is a potential rocket propellant, both in the solid form as a solid propellant oxidizer, and in the aqueous solution in monopropellant rockets, including the Network Centric Airborne Defense Element boost-phase interceptor being developed by Raytheon.[4] It is typically bonded with glycidyl azide polymer (GAP), hydroxyl-terminated polybutadiene (HTPB), or carboxy-terminated polybutadiene (CTPB) and requires preheating to 200-300 °C to decompose. The catalyst is a noble metal, similar to the other monopropellants that use silver or palladium.

It will be used in a fuel/oxidizer blend known as "AF-M315E" in the high thrust engines of the Green Propellant Infusion Mission in 2017.[5][6][7] The specific impulse of AF-M315E is 257 s.[1]

HAN is sometimes used in nuclear reprocessing as a reducing agent for plutonium ions.

Bibliography

  • Donald G. Harlow et al. (1998). "Technical Report on Hydroxlyamine Nitrate". U.S. Department of Energy. DOE/EH-0555
  • Gösta Bengtsson et al. (2002) "The kinetics and mechanism of oxidation of hydroxylamine by iron(III)". J. Chem. Soc., Dalton Trans., 2002, 2548–2552

References

  1. ^ a b Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris (15–17 July 2013). "49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit" (PDF). San Jose, California, USA. Archived from the original (PDF) on 2014-02-28. {{cite web}}: |contribution= ignored (help); Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  2. ^ Rheingold, A. L.; Cronin, J. T.; Brill, T. B.; Ross, F. K. (March 1987). "Structure of hydroxylammonium nitrate (HAN) and the deuterium homolog". Acta Crystallographica Section C. 43 (3): 402–404. doi:10.1107/S0108270187095593.
  3. ^ Pembridge, John R.; et al. (1979). Kinetics, Mechanism, and Stoicheiometry of the Oxidation of Hydroxylamine by Nitric Acid. JCS Dalton. pp. 1657–1663.
  4. ^ "Boost phase interceptor". Press Releases. Raytheon. Archived from the original on May 18, 2007. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  5. ^ "About Green Propellant Infusion Mission (GPIM)". NASA. 2014. Archived from the original on 2013-04-24. {{cite web}}: |first= missing |last= (help); Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  6. ^ "Green Propellant Infusion Mission (GPIM)". Ball Aerospace. 2014. Archived from the original on 2013-04-24. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  7. ^ Casey, Tina (19 July 2013). "NASA Sets Its Sights On $45 Million Green Fuel Mission". Clean Technica.