Lacticaseibacillus paracasei

From Wikipedia, the free encyclopedia
  (Redirected from Lactobacillus paracasei)
Jump to navigation Jump to search

Lacticaseibacillus paracasei
Lactobacillus paracasei.jpg
Scientific classification
L. paracasei
  • subsp. paracasei
  • subsp. tolerans
Binomial name
Lacticaseibacillus paracasei
(Collins et al. 1989) Zheng et al. 2020
  • Lactobacillus paracasei Collins et al. 1989

Lacticaseibacillus paracasei (commonly abbreviated as Lc. paracasei) is a gram-positive, homofermentative species of lactic acid bacteria that are commonly used in dairy product fermentation and as probiotic cultures. Lc. paracasei is a bacterium that operates by commensalism. It is commonly found in many human habitats such as human intestinal tracts and mouths as well as sewages, silages, and previously mentioned dairy products.[1] The name includes morphology, a rod-shaped (bacillus shape) bacterium with a width of 2.0 to 4.0μm and length of 0.8 to 1.0μm.

Strains of L. paracasei have been isolated from a variety of environments including dairy products, plants or plant fermentations, and from the human and animal gastrointestinal tracts.[2][3]

L. paracasei is genotypically and phenotypically closely related from other members of the Lacticaseibacillus casei group which also includes Lacticaseibacillus casei, Lacticaseibacillus zeae[4] and Lacticaseibacillus rhamnosus.[5] However, these species are readily differentiated from each other by Multi-Locus-Sequence-Typing, core genome phylogeny, or Average Nucleotide Identity.[4][3][6] Its fermentative properties allows it to be used as biological food processors and supplements for diets and medical disorders, especially in the gastrointestinal tract.[7]

Although probiotics are considered safe, they may cause bacteria-host interactions and adverse health consequences. In certain cases there is a risk of bacteremia when probiotics are used.[8][9] Currently, the probiotic strain, frequency, dose and duration of the probiotic therapies are not established.[8]


Lacticaseibacillus paracasei is a gram-positive, homofermentative, non-spore forming microorganism.[10] The cells of Lc. paracasei are typically rod shaped, with a size range of 2.0μm to 4.0μm in width, and 0.8 to 1.0μm in length.[5] The organism is nonmotile. Lc. paracasei cells often have square ends, and may exist either in single form or in chains.[5]

Lc. paracasei grows optimally in a temperature range between 10 and 37 °C.[11] No growth takes place above 40 °C. The organism is able to survive for approximately 40 seconds in a maximum temperature of 72 °C.[5] As Lc. paracasei is homofermentative, lactic acid is produced as the main product of hexose metabolism while lactate and acetate is produced from pentoses.

Lc. paracasei temporarily exists as a common inhabitant of the human gastrointestinal tract as part of the normal microbiota.[10] Naturally fermented vegetables, milk, and meat may also contain strains of L. paracasei.[11]


Lacticaseibacillus paracasei belongs to kingdom Bacteria. Lc. paracasei is part of the division "Firmicutes", the class Bacilli,[5] the order Lactobacillales and the family Lactobacillaceae respectively.[5][6] The argument on the nomenclature of L. paracasei versus L. casei was intensely debated as many strains of L. casei or L. paracasei for which sequence data is available in the databases are mis-labeled.[2] In 1989, it was proposed that L. paracasei be designated a subspecies (paracasei) to account for the species that it shares DNA homology with.[5] It has been shown their names have been used interchangeably in scientific literature.[2] 16S RNA sequence homology has confirmed the relatedness between these species[5] but core genome phylogeny confirmed that the closely related species Lc. casei, Lc. paracasei, Lc. rhamnosus and Lc. zeae are separate species.[6][4]

Historically, the difference between Lacticaseibacillus paracasei and other lactobacilli has been based on biochemical characteristics. There is an approximately 90% sequence identity between casei, paracasei, and rhamnosus.[2] However, there are some differential criteria that are commonly used to differentiate between them. These differential criteria include nutritional requirements and growth environment.[2] L. paracasei has been found to show specific differences with other lactobacilli in that it is somewhat heat resistant, grows well in ripening cheese, and it has high proteolytic activity.[12]


Lc. paracasei's genome contains circular DNA and varies slightly among the different strains isolated. On average, the genomes are 2.9 to 3.0 million base pairs (commonly abbreviated Mb). It has a GC-content between 46.2 and 46.6% and is predicted to encode about 2800 to 3100 proteins.[3] The difference in the genomes of these strains lies in variant cell envelopes, secretory proteins, and polysaccharides. Many of the commonly coded proteins are cell-surface associated cell-wall hydrolases that protect the cell against apoptosis. These enzymes have been shown to provide cellular protection to human epithelial cells.[2]

Genetic diversity for the different L. paracasei genomes was assessed using multilocus sequence typing (MLST) and amplified fragment length polymorphism (AFLP). MLST is a technique used for classifying microbes by the use of DNA fragments from essential genes of the organism.[13] AFLP is a Polymerase Chain Reaction (PCR) tool used in DNA profiling to amplify a desired DNA fragment with the use of restriction enzymes and ligands.[14]

Clinical and research applications[edit]

Lacticaseibacillus paracasei has been identified as a bacterium that has probiotic properties.[1] L. paracasei IMPC2.1 may be a chemoprophylactic in gastrointestinal cells.[15] Gastrointestinal cells are susceptible to apoptosis and cell growth from both heat-killed and viable IMPC2.1 strains.[1] Lc. paracasei 8700:2 has been isolated from healthy human gastrointestinal mucosa and human feces.[12] Strain 8700:2 was also found to inhibit Salmonella enterica and Helicobacter pylori, two pathogens commonly found in the gastrointestinal tract. Strain 8700:2 breaks down oligofructose and inulin, while also growing rapidly on both and producing lactic acid as the end product.[16]

A formulation of live bacteria including Lc. paracasei may be used in combination with conventional therapies to treat ulcerative colitis.[17] A systematic review provided significant evidence of beneficial clinical and immunologic effects of Lc. paracasei LP-33 strains in the treatment of Allergic rhinitis.[18]

Lipoteichoic acid from the cell wall of a heat killed Lacticaseibacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions in mice[19]

L. paracasei HB89 mitigates respiratory tract allergies stimulated by PM2.5.[20]

Health concerns[edit]

The manipulation of the gut microbiota is complex and may cause bacteria-host interactions. Although probiotics are considered safe, when they are used by oral administration there is a risk of passage of viable bacteria from the gastrointestinal tract to the internal organs (bacterial translocation) and subsequent bacteremia, which can cause adverse health consequences.[8] Some people, such as those with immune compromise, short bowel syndrome, central venous catheters, cardiac valve disease and premature infants, may be at higher risk for adverse events.[9]

Currently, the probiotic strain, frequency, dose and duration of the probiotic therapy are not established.[8] Live bacteria might not be essential because of beneficial effects of probiotics seems to be mediated by their DNA and by secreted soluble factors, and their therapeutic effects may be obtained by systemic administration rather than oral administration.[8][21]


LAB (Lactic Acid Bacteria) were classified and grouped in the early 1900s after gaining scientists' attention after observing the bacteria's interactions in different foods, especially dairy products. In 1991, Martinus Beijerinck, a Dutch microbiologist, separated Lactobacillus as gram positive bacteria from the previously known LAB group.[22] L. paracasei has been recently classified as a part of the Lacticaseibacillus casei group of probiotics.[1] The name Lc. paracasei was proposed for rejection in 1996 by Dicks, Duplessis, Dellaglio, and Lauer[5] but subsequent work confirmed the validity of the species.[3][6]


  1. ^ a b c d Orlando, A.; Refolo, M. G.; Messa, C.; Amati, L.; Lavermicocca, P.; Guerra, V.; Russo, F. (October 2012). "Antiproliferative and Proapoptotic Effects of Viable or Heat-Killed IMPC2.1 and GG in HGC-27 Gastric and DLD-1 Colon Cell Lines". Nutrition and Cancer. 64 (7): 1103–1111. doi:10.1080/01635581.2012.717676. PMID 23061912. S2CID 42939326.
  2. ^ a b c d e f Smokvina, Tamara; Wels, Michiel; Polka, Justyna; Chervaux, Christian; Brisse, Sylvain; Boekhorst, Jos; Vlieg, Johan E. T. van Hylckama; Siezen, Roland J.; Highlander, Sarah K. (19 July 2013). "Lactobacillus paracasei Comparative Genomics: Towards Species Pan-Genome Definition and Exploitation of Diversity". PLOS ONE. 8 (7): e68731. Bibcode:2013PLoSO...868731S. doi:10.1371/journal.pone.0068731. PMC 3716772. PMID 23894338.
  3. ^ a b c d Wuyts, Sander; Wittouck, Stijn; De Boeck, Ilke; Allonsius, Camille N.; Pasolli, Edoardo; Segata, Nicola; Lebeer, Sarah (2017). "Large-Scale Phylogenomics of the Lactobacillus casei Group Highlights Taxonomic Inconsistencies and Reveals Novel Clade-Associated Features". mSystems. 2 (4). doi:10.1128/msystems.00061-17. PMC 5566788. PMID 28845461.
  4. ^ a b c Huang, Chien-Hsun; Chen, Chih-Chieh; Liou, Jong-Shian; Lee, Ai-Yun; Blom, Jochen; Lin, Yu-Chun; Huang, Lina; Watanabe, KoichiYR 2020 (2020). "Genome-based reclassification of Lactobacillus casei: emended classification and description of the species Lactobacillus zeae". International Journal of Systematic and Evolutionary Microbiology. 70 (6): 3755–3762. doi:10.1099/ijsem.0.003969. ISSN 1466-5034. PMID 32421490.
  5. ^ a b c d e f g h i COLLINS, M. D.; PHILLIPS, B. A.; ZANONI, P. (1 April 1989). "Deoxyribonucleic Acid Homology Studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov". International Journal of Systematic Bacteriology. 39 (2): 105–108. doi:10.1099/00207713-39-2-105.
  6. ^ a b c d Zheng, Jinshui; Wittouck, Stijn; Salvetti, Elisa; Franz, Charles M.A.P.; Harris, Hugh M.B.; Mattarelli, Paola; O’Toole, Paul W.; Pot, Bruno; Vandamme, Peter; Walter, Jens; Watanabe, Koichi (2020). "A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae". International Journal of Systematic and Evolutionary Microbiology. 70 (4): 2782–2858. doi:10.1099/ijsem.0.004107. ISSN 1466-5034. PMID 32293557.
  7. ^ Felten, A; Barreau, C; Bizet, C; Lagrange, PH; Philippon, A (Mar 1999). "Lactobacillus species identification, H2O2 production, and antibiotic resistance and correlation with human clinical status". Journal of Clinical Microbiology. 37 (3): 729–33. doi:10.1128/JCM.37.3.729-733.1999. PMC 84537. PMID 9986841.
  8. ^ a b c d e Durchschein F, Petritsch W, Hammer HF (2016). "Diet therapy for inflammatory bowel diseases: The established and the new". World J Gastroenterol (Review). 22 (7): 2179–94. doi:10.3748/wjg.v22.i7.2179. PMC 4734995. PMID 26900283.
  9. ^ a b Doron S, Snydman DR (2015). "Risk and safety of probiotics". Clin Infect Dis (Review). 60 Suppl 2: S129–34. doi:10.1093/cid/civ085. PMC 4490230. PMID 25922398.
  10. ^ a b HESSLE; HANSON; WOLD (May 1999). "Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production". Clinical and Experimental Immunology. 116 (2): 276–282. doi:10.1046/j.1365-2249.1999.00885.x. PMC 1905267. PMID 10337019.
  11. ^ a b Rogan, WJ; Gladen, BC; Hung, KL; Koong, SL; Shih, LY; Taylor, JS; Wu, YC; Yang, D; Ragan, NB; Hsu, CC (Jul 15, 1988). "Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan". Science. 241 (4863): 334–6. Bibcode:1988Sci...241..334R. doi:10.1126/science.3133768. PMID 3133768. S2CID 38175194.
  12. ^ a b Molin, G.; Jeppsson, B.; Johansson, M.-L.; Ahrné, S.; Nobaek, S.; Ståhl, M.; Bengmark, S. (March 1993). "Numerical taxonomy of Lactobacillus spp. associated with healthy and diseased mucosa of the human intestines". Journal of Applied Bacteriology. 74 (3): 314–323. doi:10.1111/j.1365-2672.1993.tb03031.x. PMID 8468264.
  13. ^ Maiden, Martin; Jane Bygraves; Edward Feil (January 6, 1998). "Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms". Proceedings of the National Academy of Sciences of the United States of America. 95 (6): 3140–3145. Bibcode:1998PNAS...95.3140M. doi:10.1073/pnas.95.6.3140. PMC 19708. PMID 9501229.
  14. ^ Kumar, Awanish; Anuradha Dube (February 2013). "Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites [electronic resource]". Parasitology Research. 112 (2): 457–466. doi:10.1007/s00436-012-3238-6. PMID 23254590. S2CID 9794144.
  15. ^ Bernstein, Charles N; Nugent, Zoann; Blanchard, James F (15 March 2011). "5-Aminosalicylate Is Not Chemoprophylactic for Colorectal Cancer in IBD: A Population Based Study". The American Journal of Gastroenterology. 106 (4): 731–736. doi:10.1038/ajg.2011.50. PMID 21407180. S2CID 24239882.
  16. ^ Makras, L.; Van Acker, G.; De Vuyst, L. (3 November 2005). "Lactobacillus paracasei subsp. paracasei 8700:2 Degrades Inulin-Type Fructans Exhibiting Different Degrees of Polymerization". Applied and Environmental Microbiology. 71 (11): 6531–6537. doi:10.1128/AEM.71.11.6531-6537.2005. PMC 1287650. PMID 16269678.
  17. ^ Ghouri, Yezaz A; Richards, David M; Rahimi, Erik F; Krill, Joseph T; Jelinek, Katherine A; DuPont, Andrew W (9 December 2014). "Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease". Clin Exp Gastroenterol. 7: 473–487. doi:10.2147/CEG.S27530. PMC 4266241. PMID 25525379.
  18. ^ Guvenc, I. A.; Muluk, N. Bayar; Mutlu, F. S.; Eski, E.; Altintoprak, N.; Oktemer, T.; Cingi, C. (2016-07-20). "Do probiotics have a role in the treatment of allergic rhinitis?: A comprehensive systematic review and meta analysis". American Journal of Rhinology & Allergy. 30 (5): 157–175. doi:10.2500/ajra.2016.30.4354. ISSN 1945-8932. PMID 27442711. S2CID 6338249.
  19. ^ Wang, Shaohua; Ahmadi, Shokouh; Nagpal, Ravinder; Jain, Shalini; Mishra, Sidharth P.; Kavanagh, Kylie; Zhu, Xuewei; Wang, Zhan; McClain, Donald A.; Kritchevsky, Stephen B.; Kitzman, Dalane W. (2019-12-08). "Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice". GeroScience. 42 (1): 333–352. doi:10.1007/s11357-019-00137-4. ISSN 2509-2723. PMC 7031475. PMID 31814084.
  20. ^ Lin, Ching-Hung; Tseng, Chia-Yi; Chao, Ming-Wei (2020-12-07). "Administration of Lactobacillus paracasei HB89 mitigates PM2.5-induced enhancement of inflammation and allergic airway response in murine asthma model". PLOS ONE. 15 (12): e0243062. Bibcode:2020PLoSO..1543062L. doi:10.1371/journal.pone.0243062. ISSN 1932-6203. PMC 7721166. PMID 33284823.
  21. ^ Dotan I, Rachmilewitz D (2005). "Probiotics in inflammatory bowel disease: possible mechanisms of action". Curr Opin Gastroenterol (Review). 21 (4): 426–30. PMID 15930982.
  22. ^ Stiles, ME; Holzapfel, WH (Apr 29, 1997). "Lactic acid bacteria of foods and their current taxonomy". International Journal of Food Microbiology. 36 (1): 1–29. doi:10.1016/s0168-1605(96)01233-0. PMID 9168311.

External links[edit]