Jump to content

Lee conformal world in a tetrahedron

From Wikipedia, the free encyclopedia
(Redirected from Lee conformal projection)
Lee conformal tetrahedric projection of the world centered on the south pole.
The Lee conformal world in a tetrahedron with Tissot's indicatrix of deformation.
Lee conformal tetrahedric projection tessellated several times in the plane.

The Lee conformal world in a tetrahedron is a polyhedral, conformal map projection that projects the globe onto a tetrahedron using Dixon elliptic functions. It is conformal everywhere except for the four singularities at the vertices of the polyhedron. Because of the nature of polyhedra, this map projection can be tessellated infinitely in the plane. It was developed by Laurence Patrick Lee in 1965.[1]

Coordinates from a spherical datum can be transformed into Lee conformal projection coordinates with the following formulas,[1] where is the longitude and the latitude:

where

and sm and cm are Dixon elliptic functions.

Since there is no elementary expression for these functions, Lee suggests using the 28th-degree MacLaurin series.[1]

See also

[edit]

References

[edit]
  1. ^ a b c Lee, L.P. (1965). "Some Conformal Projections Based on Elliptic Functions". Geographical Review. 55 (4): 563–580. doi:10.2307/212415. JSTOR 212415.
    Lee, L. P. (1973). "The Conformal Tetrahedric Projection with some Practical Applications". The Cartographic Journal. 10 (1): 22–28. doi:10.1179/caj.1973.10.1.22.

    Lee, L. P. (1976). Conformal Projections Based on Elliptic Functions. Cartographica Monographs. Vol. 16. Toronto: B. V. Gutsell, York University. ISBN 0-919870-16-3. Supplement No. 1 to The Canadian Cartographer 13.