Runge–Kutta methods are methods for the numerical solution of the ordinary differential equation
d
y
d
t
=
f
(
t
,
y
)
.
{\displaystyle {\frac {dy}{dt}}=f(t,y).}
Explicit Runge–Kutta methods take the form
y
n
+
1
=
y
n
+
h
∑
i
=
1
s
b
i
k
i
k
1
=
f
(
t
n
,
y
n
)
,
k
2
=
f
(
t
n
+
c
2
h
,
y
n
+
h
(
a
21
k
1
)
)
,
k
3
=
f
(
t
n
+
c
3
h
,
y
n
+
h
(
a
31
k
1
+
a
32
k
2
)
)
,
⋮
k
i
=
f
(
t
n
+
c
i
h
,
y
n
+
h
∑
j
=
1
i
−
1
a
i
j
k
j
)
.
{\displaystyle {\begin{aligned}y_{n+1}&=y_{n}+h\sum _{i=1}^{s}b_{i}k_{i}\\k_{1}&=f(t_{n},y_{n}),\\k_{2}&=f(t_{n}+c_{2}h,y_{n}+h(a_{21}k_{1})),\\k_{3}&=f(t_{n}+c_{3}h,y_{n}+h(a_{31}k_{1}+a_{32}k_{2})),\\&\;\;\vdots \\k_{i}&=f\left(t_{n}+c_{i}h,y_{n}+h\sum _{j=1}^{i-1}a_{ij}k_{j}\right).\end{aligned}}}
Stages for implicit methods of s stages take the more general form, with the solution to be found over all s
k
i
=
f
(
t
n
+
c
i
h
,
y
n
+
h
∑
j
=
1
s
a
i
j
k
j
)
.
{\displaystyle k_{i}=f\left(t_{n}+c_{i}h,y_{n}+h\sum _{j=1}^{s}a_{ij}k_{j}\right).}
Each method listed on this page is defined by its Butcher tableau , which puts the coefficients of the method in a table as follows:
c
1
a
11
a
12
…
a
1
s
c
2
a
21
a
22
…
a
2
s
⋮
⋮
⋮
⋱
⋮
c
s
a
s
1
a
s
2
…
a
s
s
b
1
b
2
…
b
s
{\displaystyle {\begin{array}{c|cccc}c_{1}&a_{11}&a_{12}&\dots &a_{1s}\\c_{2}&a_{21}&a_{22}&\dots &a_{2s}\\\vdots &\vdots &\vdots &\ddots &\vdots \\c_{s}&a_{s1}&a_{s2}&\dots &a_{ss}\\\hline &b_{1}&b_{2}&\dots &b_{s}\\\end{array}}}
For adaptive and implicit methods , the Butcher tableau is extended to give values of
b
i
∗
{\displaystyle b_{i}^{*}}
, and the estimated error is then
e
n
+
1
=
h
∑
i
=
1
s
(
b
i
−
b
i
∗
)
k
i
{\displaystyle e_{n+1}=h\sum _{i=1}^{s}(b_{i}-b_{i}^{*})k_{i}}
.
Explicit methods [ edit ]
The explicit methods are those where the matrix
[
a
i
j
]
{\displaystyle [a_{ij}]}
is lower triangular .
Forward Euler [ edit ]
The Euler method is first order. The lack of stability and accuracy limits its popularity mainly to use as a simple introductory example of a numeric solution method.
0
0
1
{\displaystyle {\begin{array}{c|c}0&0\\\hline &1\\\end{array}}}
Explicit midpoint method [ edit ]
The (explicit) midpoint method is a second-order method with two stages (see also the implicit midpoint method below):
0
0
0
1
/
2
1
/
2
0
0
1
{\displaystyle {\begin{array}{c|cc}0&0&0\\1/2&1/2&0\\\hline &0&1\\\end{array}}}
Heun's method [ edit ]
Heun's method is a second-order method with two stages. It is also known as the explicit trapezoid rule, improved Euler's method, or modified Euler's method. (Note: The "eu" is pronounced the same way as in "Euler", so "Heun" rhymes with "coin"):
0
0
0
1
1
0
1
/
2
1
/
2
{\displaystyle {\begin{array}{c|cc}0&0&0\\1&1&0\\\hline &1/2&1/2\\\end{array}}}
Ralston's method [ edit ]
Ralston's method is a second-order method[1] with two stages and a minimum local error bound:
0
0
0
2
/
3
2
/
3
0
1
/
4
3
/
4
{\displaystyle {\begin{array}{c|cc}0&0&0\\2/3&2/3&0\\\hline &1/4&3/4\\\end{array}}}
Generic second-order method [ edit ]
0
0
0
α
α
0
1
−
1
2
α
1
2
α
{\displaystyle {\begin{array}{c|ccc}0&0&0\\\alpha &\alpha &0\\\hline &1-{\frac {1}{2\alpha }}&{\frac {1}{2\alpha }}\\\end{array}}}
Kutta's third-order method [ edit ]
0
0
0
0
1
/
2
1
/
2
0
0
1
−
1
2
0
1
/
6
2
/
3
1
/
6
{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\1/2&1/2&0&0\\1&-1&2&0\\\hline &1/6&2/3&1/6\\\end{array}}}
Generic third-order method [ edit ]
See Sanderse and Veldman (2019).[2]
for α ≠ 0, 2 ⁄3 , 1:
0
0
0
0
α
α
0
0
1
1
+
1
−
α
α
(
3
α
−
2
)
−
1
−
α
α
(
3
α
−
2
)
0
1
2
−
1
6
α
1
6
α
(
1
−
α
)
2
−
3
α
6
(
1
−
α
)
{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\\alpha &\alpha &0&0\\1&1+{\frac {1-\alpha }{\alpha (3\alpha -2)}}&-{\frac {1-\alpha }{\alpha (3\alpha -2)}}&0\\\hline &{\frac {1}{2}}-{\frac {1}{6\alpha }}&{\frac {1}{6\alpha (1-\alpha )}}&{\frac {2-3\alpha }{6(1-\alpha )}}\\\end{array}}}
Heun's third-order method [ edit ]
0
0
0
0
1
/
3
1
/
3
0
0
2
/
3
0
2
/
3
0
1
/
4
0
3
/
4
{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\1/3&1/3&0&0\\2/3&0&2/3&0\\\hline &1/4&0&3/4\\\end{array}}}
Van der Houwen's/Wray third-order method [ edit ]
0
0
0
0
8
/
15
8
/
15
0
0
2
/
3
1
/
4
5
/
12
0
1
/
4
0
3
/
4
{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\8/15&8/15&0&0\\2/3&1/4&5/12&0\\\hline &1/4&0&3/4\\\end{array}}}
Ralston's third-order method [ edit ]
Ralston's third-order method[1] is used in the embedded Bogacki–Shampine method .
0
0
0
0
1
/
2
1
/
2
0
0
3
/
4
0
3
/
4
0
2
/
9
1
/
3
4
/
9
{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\1/2&1/2&0&0\\3/4&0&3/4&0\\\hline &2/9&1/3&4/9\\\end{array}}}
Third-order Strong Stability Preserving Runge-Kutta (SSPRK3) [ edit ]
0
0
0
0
1
1
0
0
1
/
2
1
/
4
1
/
4
0
1
/
6
1
/
6
2
/
3
{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\1&1&0&0\\1/2&1/4&1/4&0\\\hline &1/6&1/6&2/3\\\end{array}}}
Classic fourth-order method [ edit ]
The "original" Runge–Kutta method.[3]
0
0
0
0
0
1
/
2
1
/
2
0
0
0
1
/
2
0
1
/
2
0
0
1
0
0
1
0
1
/
6
1
/
3
1
/
3
1
/
6
{\displaystyle {\begin{array}{c|cccc}0&0&0&0&0\\1/2&1/2&0&0&0\\1/2&0&1/2&0&0\\1&0&0&1&0\\\hline &1/6&1/3&1/3&1/6\\\end{array}}}
3/8-rule fourth-order method [ edit ]
This method doesn't have as much notoriety as the "classic" method, but is just as classic because it was proposed in the same paper (Kutta, 1901).[3]
0
0
0
0
0
1
/
3
1
/
3
0
0
0
2
/
3
−
1
/
3
1
0
0
1
1
−
1
1
0
1
/
8
3
/
8
3
/
8
1
/
8
{\displaystyle {\begin{array}{c|cccc}0&0&0&0&0\\1/3&1/3&0&0&0\\2/3&-1/3&1&0&0\\1&1&-1&1&0\\\hline &1/8&3/8&3/8&1/8\\\end{array}}}
Ralston's fourth-order method [ edit ]
This fourth order method[1] has minimum truncation error.
0
0
0
0
0
.4
.4
0
0
0
.45573725
.29697761
.15875964
0
0
1
.21810040
−
3.05096516
3.83286476
0
.17476028
−
.55148066
1.20553560
.17118478
{\displaystyle {\begin{array}{c|cccc}0&0&0&0&0\\.4&.4&0&0&0\\.45573725&.29697761&.15875964&0&0\\1&.21810040&-3.05096516&3.83286476&0\\\hline &.17476028&-.55148066&1.20553560&.17118478\\\end{array}}}
Embedded methods [ edit ]
The embedded methods are designed to produce an estimate of the local truncation error of a single Runge–Kutta step, and as result, allow to control the error with adaptive stepsize . This is done by having two methods in the tableau, one with order p and one with order p-1.
The lower-order step is given by
y
n
+
1
∗
=
y
n
+
h
∑
i
=
1
s
b
i
∗
k
i
,
{\displaystyle y_{n+1}^{*}=y_{n}+h\sum _{i=1}^{s}b_{i}^{*}k_{i},}
where the
k
i
{\displaystyle k_{i}}
are the same as for the higher order method. Then the error is
e
n
+
1
=
y
n
+
1
−
y
n
+
1
∗
=
h
∑
i
=
1
s
(
b
i
−
b
i
∗
)
k
i
,
{\displaystyle e_{n+1}=y_{n+1}-y_{n+1}^{*}=h\sum _{i=1}^{s}(b_{i}-b_{i}^{*})k_{i},}
which is
O
(
h
p
)
{\displaystyle O(h^{p})}
. The Butcher Tableau for this kind of method is extended to give the values of
b
i
∗
{\displaystyle b_{i}^{*}}
c
1
a
11
a
12
…
a
1
s
c
2
a
21
a
22
…
a
2
s
⋮
⋮
⋮
⋱
⋮
c
s
a
s
1
a
s
2
…
a
s
s
b
1
b
2
…
b
s
b
1
∗
b
2
∗
…
b
s
∗
{\displaystyle {\begin{array}{c|cccc}c_{1}&a_{11}&a_{12}&\dots &a_{1s}\\c_{2}&a_{21}&a_{22}&\dots &a_{2s}\\\vdots &\vdots &\vdots &\ddots &\vdots \\c_{s}&a_{s1}&a_{s2}&\dots &a_{ss}\\\hline &b_{1}&b_{2}&\dots &b_{s}\\&b_{1}^{*}&b_{2}^{*}&\dots &b_{s}^{*}\\\end{array}}}
Heun–Euler [ edit ]
The simplest adaptive Runge–Kutta method involves combining Heun's method , which is order 2, with the Euler method, which is order 1. Its extended Butcher Tableau is:
0
1
1
1
/
2
1
/
2
1
0
{\displaystyle {\begin{array}{c|cc}0&\\1&1\\\hline &1/2&1/2\\&1&0\end{array}}}
The error estimate is used to control the stepsize.
Fehlberg RK1(2) [ edit ]
The Fehlberg method [4] has two methods of orders 1 and 2. Its extended Butcher Tableau is:
0
1/2
1/2
1
1/256
255/256
1/512
255/256
1/512
1/256
255/256
0
The first row of b coefficients gives the second-order accurate solution, and the second row has order one.
Bogacki–Shampine [ edit ]
The Bogacki–Shampine method has two methods of orders 2 and 3. Its extended Butcher Tableau is:
0
1/2
1/2
3/4
0
3/4
1
2/9
1/3
4/9
2/9
1/3
4/9
0
7/24
1/4
1/3
1/8
The first row of b coefficients gives the third-order accurate solution, and the second row has order two.
Fehlberg [ edit ]
The Runge–Kutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is:
0
1
/
4
1
/
4
3
/
8
3
/
32
9
/
32
12
/
13
1932
/
2197
−
7200
/
2197
7296
/
2197
1
439
/
216
−
8
3680
/
513
−
845
/
4104
1
/
2
−
8
/
27
2
−
3544
/
2565
1859
/
4104
−
11
/
40
16
/
135
0
6656
/
12825
28561
/
56430
−
9
/
50
2
/
55
25
/
216
0
1408
/
2565
2197
/
4104
−
1
/
5
0
{\displaystyle {\begin{array}{r|ccccc}0&&&&&\\1/4&1/4&&&\\3/8&3/32&9/32&&\\12/13&1932/2197&-7200/2197&7296/2197&\\1&439/216&-8&3680/513&-845/4104&\\1/2&-8/27&2&-3544/2565&1859/4104&-11/40\\\hline &16/135&0&6656/12825&28561/56430&-9/50&2/55\\&25/216&0&1408/2565&2197/4104&-1/5&0\end{array}}}
The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.
The coefficients here allow for an adaptive stepsize to be determined automatically.
Cash-Karp [ edit ]
Cash and Karp have modified Fehlberg's original idea. The extended tableau for the Cash–Karp method is
0
1/5
1/5
3/10
3/40
9/40
3/5
3/10
−9/10
6/5
1
−11/54
5/2
−70/27
35/27
7/8
1631/55296
175/512
575/13824
44275/110592
253/4096
37/378
0
250/621
125/594
0
512/1771
2825/27648
0
18575/48384
13525/55296
277/14336
1/4
The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.
Dormand–Prince [ edit ]
The extended tableau for the Dormand–Prince method is
0
1/5
1/5
3/10
3/40
9/40
4/5
44/45
−56/15
32/9
8/9
19372/6561
−25360/2187
64448/6561
−212/729
1
9017/3168
−355/33
46732/5247
49/176
−5103/18656
1
35/384
0
500/1113
125/192
−2187/6784
11/84
35/384
0
500/1113
125/192
−2187/6784
11/84
0
5179/57600
0
7571/16695
393/640
−92097/339200
187/2100
1/40
The first row of b coefficients gives the fifth-order accurate solution, and the second row gives the fourth-order accurate solution.
Implicit methods [ edit ]
Backward Euler [ edit ]
The backward Euler method is first order. Unconditionally stable and non-oscillatory for linear diffusion problems.
1
1
1
{\displaystyle {\begin{array}{c|c}1&1\\\hline &1\\\end{array}}}
Implicit midpoint [ edit ]
The implicit midpoint method is of second order. It is the simplest method in the class of collocation methods known as the Gauss-Legendre methods . It is a symplectic integrator .
1
/
2
1
/
2
1
{\displaystyle {\begin{array}{c|c}1/2&1/2\\\hline &1\end{array}}}
Crank-Nicolson method [ edit ]
The Crank–Nicolson method corresponds to the implicit trapezoidal rule and is a second-order accurate and A-stable method.
0
0
0
1
1
/
2
1
/
2
1
/
2
1
/
2
{\displaystyle {\begin{array}{c|cc}0&0&0\\1&1/2&1/2\\\hline &1/2&1/2\\\end{array}}}
Gauss–Legendre methods [ edit ]
These methods are based on the points of Gauss–Legendre quadrature . The Gauss–Legendre method of order four has Butcher tableau:
1
2
−
3
6
1
4
1
4
−
3
6
1
2
+
3
6
1
4
+
3
6
1
4
1
2
1
2
1
2
+
3
2
1
2
−
3
2
{\displaystyle {\begin{array}{c|cc}{\frac {1}{2}}-{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}&{\frac {1}{4}}-{\frac {\sqrt {3}}{6}}\\{\frac {1}{2}}+{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}+{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}\\\hline &{\frac {1}{2}}&{\frac {1}{2}}\\&{\frac {1}{2}}+{\frac {\sqrt {3}}{2}}&{\frac {1}{2}}-{\frac {\sqrt {3}}{2}}\\\end{array}}}
The Gauss–Legendre method of order six has Butcher tableau:
1
2
−
15
10
5
36
2
9
−
15
15
5
36
−
15
30
1
2
5
36
+
15
24
2
9
5
36
−
15
24
1
2
+
15
10
5
36
+
15
30
2
9
+
15
15
5
36
5
18
4
9
5
18
−
5
6
8
3
−
5
6
{\displaystyle {\begin{array}{c|ccc}{\frac {1}{2}}-{\frac {\sqrt {15}}{10}}&{\frac {5}{36}}&{\frac {2}{9}}-{\frac {\sqrt {15}}{15}}&{\frac {5}{36}}-{\frac {\sqrt {15}}{30}}\\{\frac {1}{2}}&{\frac {5}{36}}+{\frac {\sqrt {15}}{24}}&{\frac {2}{9}}&{\frac {5}{36}}-{\frac {\sqrt {15}}{24}}\\{\frac {1}{2}}+{\frac {\sqrt {15}}{10}}&{\frac {5}{36}}+{\frac {\sqrt {15}}{30}}&{\frac {2}{9}}+{\frac {\sqrt {15}}{15}}&{\frac {5}{36}}\\\hline &{\frac {5}{18}}&{\frac {4}{9}}&{\frac {5}{18}}\\&-{\frac {5}{6}}&{\frac {8}{3}}&-{\frac {5}{6}}\end{array}}}
Diagonally Implicit Runge–Kutta methods [ edit ]
Diagonally Implicit Runge–Kutta (DIRK) formulae have been widely used for the numerical solution of stiff initial value problems;
[5]
the advantage of this approach is that here the solution may be found sequentially as opposed to simultaneously.
The simplest method from this class is the order 2 implicit midpoint method .
Kraaijevanger and Spijker's two-stage Diagonally Implicit Runge–Kutta method:
1
/
2
1
/
2
0
3
/
2
−
1
/
2
2
−
1
/
2
3
/
2
{\displaystyle {\begin{array}{c|cc}1/2&1/2&0\\3/2&-1/2&2\\\hline &-1/2&3/2\\\end{array}}}
Qin and Zhang's two-stage, 2nd order, symplectic Diagonally Implicit Runge–Kutta method:
1
/
4
1
/
4
0
3
/
4
1
/
2
1
/
4
1
/
2
1
/
2
{\displaystyle {\begin{array}{c|cc}1/4&1/4&0\\3/4&1/2&1/4\\\hline &1/2&1/2\\\end{array}}}
Pareschi and Russo's two-stage 2nd order Diagonally Implicit Runge–Kutta method:
x
x
0
1
−
x
1
−
2
x
x
1
2
1
2
{\displaystyle {\begin{array}{c|cc}x&x&0\\1-x&1-2x&x\\\hline &{\frac {1}{2}}&{\frac {1}{2}}\\\end{array}}}
This Diagonally Implicit Runge–Kutta method is A-stable if and only if
x
≥
1
4
{\textstyle x\geq {\frac {1}{4}}}
. Moreover, this method is L-stable if and only if
x
{\displaystyle x}
equals one of the roots of the polynomial
x
2
−
2
x
+
1
2
{\textstyle x^{2}-2x+{\frac {1}{2}}}
, i.e. if
x
=
1
±
2
2
{\textstyle x=1\pm {\frac {\sqrt {2}}{2}}}
.
Qin and Zhang's Diagonally Implicit Runge–Kutta method corresponds to Pareschi and Russo's Diagonally Implicit Runge–Kutta method with
x
=
1
/
4
{\displaystyle x=1/4}
.
Two-stage 2nd order Diagonally Implicit Runge–Kutta method:
x
x
0
1
1
−
x
x
1
−
x
x
{\displaystyle {\begin{array}{c|cc}x&x&0\\1&1-x&x\\\hline &1-x&x\\\end{array}}}
Again, this Diagonally Implicit Runge–Kutta method is A-stable if and only if
x
≥
1
4
{\textstyle x\geq {\frac {1}{4}}}
. As the previous method, this method is again L-stable if and only if
x
{\displaystyle x}
equals one of the roots of the polynomial
x
2
−
2
x
+
1
2
{\textstyle x^{2}-2x+{\frac {1}{2}}}
, i.e. if
x
=
1
±
2
2
{\textstyle x=1\pm {\frac {\sqrt {2}}{2}}}
.
Crouzeix's two-stage, 3rd order Diagonally Implicit Runge–Kutta method:
1
2
+
3
6
1
2
+
3
6
0
1
2
−
3
6
−
3
3
1
2
+
3
6
1
2
1
2
{\displaystyle {\begin{array}{c|cc}{\frac {1}{2}}+{\frac {\sqrt {3}}{6}}&{\frac {1}{2}}+{\frac {\sqrt {3}}{6}}&0\\{\frac {1}{2}}-{\frac {\sqrt {3}}{6}}&-{\frac {\sqrt {3}}{3}}&{\frac {1}{2}}+{\frac {\sqrt {3}}{6}}\\\hline &{\frac {1}{2}}&{\frac {1}{2}}\\\end{array}}}
Crouzeix's three-stage, 4th order Diagonally Implicit Runge–Kutta method:
1
+
α
2
1
+
α
2
0
0
1
2
−
α
2
1
+
α
2
0
1
−
α
2
1
+
α
−
(
1
+
2
α
)
1
+
α
2
1
6
α
2
1
−
1
3
α
2
1
6
α
2
{\displaystyle {\begin{array}{c|ccc}{\frac {1+\alpha }{2}}&{\frac {1+\alpha }{2}}&0&0\\{\frac {1}{2}}&-{\frac {\alpha }{2}}&{\frac {1+\alpha }{2}}&0\\{\frac {1-\alpha }{2}}&1+\alpha &-(1+2\,\alpha )&{\frac {1+\alpha }{2}}\\\hline &{\frac {1}{6\alpha ^{2}}}&1-{\frac {1}{3\alpha ^{2}}}&{\frac {1}{6\alpha ^{2}}}\\\end{array}}}
with
α
=
2
3
cos
π
18
{\textstyle \alpha ={\frac {2}{\sqrt {3}}}\cos {\frac {\pi }{18}}}
.
Three-stage, 3rd order, L-stable Diagonally Implicit Runge–Kutta method:
x
x
0
0
1
+
x
2
1
−
x
2
x
0
1
−
3
x
2
/
2
+
4
x
−
1
/
4
3
x
2
/
2
−
5
x
+
5
/
4
x
−
3
x
2
/
2
+
4
x
−
1
/
4
3
x
2
/
2
−
5
x
+
5
/
4
x
{\displaystyle {\begin{array}{c|ccc}x&x&0&0\\{\frac {1+x}{2}}&{\frac {1-x}{2}}&x&0\\1&-3x^{2}/2+4x-1/4&3x^{2}/2-5x+5/4&x\\\hline &-3x^{2}/2+4x-1/4&3x^{2}/2-5x+5/4&x\\\end{array}}}
with
x
=
0.4358665215
{\displaystyle x=0.4358665215}
Nørsett's three-stage, 4th order Diagonally Implicit Runge–Kutta method has the following Butcher tableau:
x
x
0
0
1
/
2
1
/
2
−
x
x
0
1
−
x
2
x
1
−
4
x
x
1
6
(
1
−
2
x
)
2
3
(
1
−
2
x
)
2
−
1
3
(
1
−
2
x
)
2
1
6
(
1
−
2
x
)
2
{\displaystyle {\begin{array}{c|ccc}x&x&0&0\\1/2&1/2-x&x&0\\1-x&2x&1-4x&x\\\hline &{\frac {1}{6(1-2x)^{2}}}&{\frac {3(1-2x)^{2}-1}{3(1-2x)^{2}}}&{\frac {1}{6(1-2x)^{2}}}\\\end{array}}}
with
x
{\displaystyle x}
one of the three roots of the cubic equation
x
3
−
3
x
2
/
2
+
x
/
2
−
1
/
24
=
0
{\displaystyle x^{3}-3x^{2}/2+x/2-1/24=0}
. The three roots of this cubic equation are approximately
x
1
=
1.06858
{\displaystyle x_{1}=1.06858}
,
x
2
=
0.30254
{\displaystyle x_{2}=0.30254}
, and
x
3
=
0.12889
{\displaystyle x_{3}=0.12889}
. The root
x
1
{\displaystyle x_{1}}
gives the best stability properties for initial value problems.
Four-stage, 3rd order, L-stable Diagonally Implicit Runge–Kutta method
1
/
2
1
/
2
0
0
0
2
/
3
1
/
6
1
/
2
0
0
1
/
2
−
1
/
2
1
/
2
1
/
2
0
1
3
/
2
−
3
/
2
1
/
2
1
/
2
3
/
2
−
3
/
2
1
/
2
1
/
2
{\displaystyle {\begin{array}{c|cccc}1/2&1/2&0&0&0\\2/3&1/6&1/2&0&0\\1/2&-1/2&1/2&1/2&0\\1&3/2&-3/2&1/2&1/2\\\hline &3/2&-3/2&1/2&1/2\\\end{array}}}
Lobatto methods [ edit ]
There are three main families of Lobatto methods, called IIIA, IIIB and IIIC (in classical mathematical literature, the symbols I and II are reserved for two types of Radau methods). These are named after Rehuel Lobatto [6] as a reference to the Lobatto quadrature rule , but were introduced by Byron L. Ehle in his thesis.[7] All are implicit methods, have order 2s − 2 and they all have c 1 = 0 and c s = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Lobatto lived before the classic fourth-order method was popularized by Runge and Kutta.
Lobatto IIIA methods [ edit ]
The Lobatto IIIA methods are collocation methods . The second-order method is known as the trapezoidal rule :
0
0
0
1
1
/
2
1
/
2
1
/
2
1
/
2
1
0
{\displaystyle {\begin{array}{c|cc}0&0&0\\1&1/2&1/2\\\hline &1/2&1/2\\&1&0\\\end{array}}}
The fourth-order method is given by
0
0
0
0
1
/
2
5
/
24
1
/
3
−
1
/
24
1
1
/
6
2
/
3
1
/
6
1
/
6
2
/
3
1
/
6
−
1
2
2
−
1
2
{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\1/2&5/24&1/3&-1/24\\1&1/6&2/3&1/6\\\hline &1/6&2/3&1/6\\&-{\frac {1}{2}}&2&-{\frac {1}{2}}\\\end{array}}}
These methods are A-stable, but not L-stable and B-stable.
Lobatto IIIB methods [ edit ]
The Lobatto IIIB methods are not collocation methods, but they can be viewed as discontinuous collocation methods (Hairer, Lubich & Wanner 2006 , §II.1.4). The second-order method is given by
0
1
/
2
0
1
1
/
2
0
1
/
2
1
/
2
1
0
{\displaystyle {\begin{array}{c|cc}0&1/2&0\\1&1/2&0\\\hline &1/2&1/2\\&1&0\\\end{array}}}
The fourth-order method is given by
0
1
/
6
−
1
/
6
0
1
/
2
1
/
6
1
/
3
0
1
1
/
6
5
/
6
0
1
/
6
2
/
3
1
/
6
−
1
2
2
−
1
2
{\displaystyle {\begin{array}{c|ccc}0&1/6&-1/6&0\\1/2&1/6&1/3&0\\1&1/6&5/6&0\\\hline &1/6&2/3&1/6\\&-{\frac {1}{2}}&2&-{\frac {1}{2}}\\\end{array}}}
Lobatto IIIB methods are A-stable, but not L-stable and B-stable.
Lobatto IIIC methods [ edit ]
The Lobatto IIIC methods also are discontinuous collocation methods. The second-order method is given by
0
1
/
2
−
1
/
2
1
1
/
2
1
/
2
1
/
2
1
/
2
1
0
{\displaystyle {\begin{array}{c|cc}0&1/2&-1/2\\1&1/2&1/2\\\hline &1/2&1/2\\&1&0\\\end{array}}}
The fourth-order method is given by
0
1
/
6
−
1
/
3
1
/
6
1
/
2
1
/
6
5
/
12
−
1
/
12
1
1
/
6
2
/
3
1
/
6
1
/
6
2
/
3
1
/
6
−
1
2
2
−
1
2
{\displaystyle {\begin{array}{c|ccc}0&1/6&-1/3&1/6\\1/2&1/6&5/12&-1/12\\1&1/6&2/3&1/6\\\hline &1/6&2/3&1/6\\&-{\frac {1}{2}}&2&-{\frac {1}{2}}\\\end{array}}}
They are L-stable. They are also algebraically stable and thus B-stable, that makes them suitable for stiff problems.
Lobatto IIIC* methods [ edit ]
The Lobatto IIIC* methods are also known as Lobatto III methods (Butcher, 2008), Butcher's Lobatto methods (Hairer et al., 1993), and Lobatto IIIC methods (Sun, 2000) in the literature.[6] The second-order method is given by
0
0
0
1
1
0
1
/
2
1
/
2
{\displaystyle {\begin{array}{c|cc}0&0&0\\1&1&0\\\hline &1/2&1/2\\\end{array}}}
Butcher's three-stage, fourth-order method is given by
0
0
0
0
1
/
2
1
/
4
1
/
4
0
1
0
1
0
1
/
6
2
/
3
1
/
6
{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\1/2&1/4&1/4&0\\1&0&1&0\\\hline &1/6&2/3&1/6\\\end{array}}}
These methods are not A-stable, B-stable or L-stable. The Lobatto IIIC* method for
s
=
2
{\displaystyle s=2}
is sometimes called the explicit trapezoidal rule.
Generalized Lobatto methods [ edit ]
One can consider a very general family of methods with three real parameters
(
α
A
,
α
B
,
α
C
)
{\displaystyle (\alpha _{A},\alpha _{B},\alpha _{C})}
by considering Lobatto coefficients of the form
a
i
,
j
(
α
A
,
α
B
,
α
C
)
=
α
A
a
i
,
j
A
+
α
B
a
i
,
j
B
+
α
C
a
i
,
j
C
+
α
C
∗
a
i
,
j
C
∗
{\displaystyle a_{i,j}(\alpha _{A},\alpha _{B},\alpha _{C})=\alpha _{A}a_{i,j}^{A}+\alpha _{B}a_{i,j}^{B}+\alpha _{C}a_{i,j}^{C}+\alpha _{C*}a_{i,j}^{C*}}
,
where
α
C
∗
=
1
−
α
A
−
α
B
−
α
C
{\displaystyle \alpha _{C*}=1-\alpha _{A}-\alpha _{B}-\alpha _{C}}
.
For example, Lobatto IIID family introduced in (Nørsett and Wanner, 1981), also called Lobatto IIINW, are given by
0
1
/
2
1
/
2
1
−
1
/
2
1
/
2
1
/
2
1
/
2
{\displaystyle {\begin{array}{c|cc}0&1/2&1/2\\1&-1/2&1/2\\\hline &1/2&1/2\\\end{array}}}
and
0
1
/
6
0
−
1
/
6
1
/
2
1
/
12
5
/
12
0
1
1
/
2
1
/
3
1
/
6
1
/
6
2
/
3
1
/
6
{\displaystyle {\begin{array}{c|ccc}0&1/6&0&-1/6\\1/2&1/12&5/12&0\\1&1/2&1/3&1/6\\\hline &1/6&2/3&1/6\\\end{array}}}
These methods correspond to
α
A
=
2
{\displaystyle \alpha _{A}=2}
,
α
B
=
2
{\displaystyle \alpha _{B}=2}
,
α
C
=
−
1
{\displaystyle \alpha _{C}=-1}
, and
α
C
∗
=
−
2
{\displaystyle \alpha _{C*}=-2}
. The methods are L-stable. They are algebraically stable and thus B-stable.
Radau methods [ edit ]
Radau methods are fully implicit methods (matrix A of such methods can have any structure). Radau methods attain order 2s − 1 for s stages. Radau methods are A-stable, but expensive to implement. Also they can suffer from order reduction.
The first order Radau method is similar to backward Euler method.
Radau IA methods [ edit ]
The third-order method is given by
0
1
/
4
−
1
/
4
2
/
3
1
/
4
5
/
12
1
/
4
3
/
4
{\displaystyle {\begin{array}{c|cc}0&1/4&-1/4\\2/3&1/4&5/12\\\hline &1/4&3/4\\\end{array}}}
The fifth-order method is given by
0
1
9
−
1
−
6
18
−
1
+
6
18
3
5
−
6
10
1
9
11
45
+
7
6
360
11
45
−
43
6
360
3
5
+
6
10
1
9
11
45
+
43
6
360
11
45
−
7
6
360
1
9
4
9
+
6
36
4
9
−
6
36
{\displaystyle {\begin{array}{c|ccc}0&{\frac {1}{9}}&{\frac {-1-{\sqrt {6}}}{18}}&{\frac {-1+{\sqrt {6}}}{18}}\\{\frac {3}{5}}-{\frac {\sqrt {6}}{10}}&{\frac {1}{9}}&{\frac {11}{45}}+{\frac {7{\sqrt {6}}}{360}}&{\frac {11}{45}}-{\frac {43{\sqrt {6}}}{360}}\\{\frac {3}{5}}+{\frac {\sqrt {6}}{10}}&{\frac {1}{9}}&{\frac {11}{45}}+{\frac {43{\sqrt {6}}}{360}}&{\frac {11}{45}}-{\frac {7{\sqrt {6}}}{360}}\\\hline &{\frac {1}{9}}&{\frac {4}{9}}+{\frac {\sqrt {6}}{36}}&{\frac {4}{9}}-{\frac {\sqrt {6}}{36}}\\\end{array}}}
Radau IIA methods [ edit ]
The c i of this method are zeros of
d
s
−
1
d
x
s
−
1
(
x
s
−
1
(
x
−
1
)
s
)
{\displaystyle {\frac {d^{s-1}}{dx^{s-1}}}(x^{s-1}(x-1)^{s})}
.
The third-order method is given by
1
/
3
5
/
12
−
1
/
12
1
3
/
4
1
/
4
3
/
4
1
/
4
{\displaystyle {\begin{array}{c|cc}1/3&5/12&-1/12\\1&3/4&1/4\\\hline &3/4&1/4\\\end{array}}}
The fifth-order method is given by
2
5
−
6
10
11
45
−
7
6
360
37
225
−
169
6
1800
−
2
225
+
6
75
2
5
+
6
10
37
225
+
169
6
1800
11
45
+
7
6
360
−
2
225
−
6
75
1
4
9
−
6
36
4
9
+
6
36
1
9
4
9
−
6
36
4
9
+
6
36
1
9
{\displaystyle {\begin{array}{c|ccc}{\frac {2}{5}}-{\frac {\sqrt {6}}{10}}&{\frac {11}{45}}-{\frac {7{\sqrt {6}}}{360}}&{\frac {37}{225}}-{\frac {169{\sqrt {6}}}{1800}}&-{\frac {2}{225}}+{\frac {\sqrt {6}}{75}}\\{\frac {2}{5}}+{\frac {\sqrt {6}}{10}}&{\frac {37}{225}}+{\frac {169{\sqrt {6}}}{1800}}&{\frac {11}{45}}+{\frac {7{\sqrt {6}}}{360}}&-{\frac {2}{225}}-{\frac {\sqrt {6}}{75}}\\1&{\frac {4}{9}}-{\frac {\sqrt {6}}{36}}&{\frac {4}{9}}+{\frac {\sqrt {6}}{36}}&{\frac {1}{9}}\\\hline &{\frac {4}{9}}-{\frac {\sqrt {6}}{36}}&{\frac {4}{9}}+{\frac {\sqrt {6}}{36}}&{\frac {1}{9}}\\\end{array}}}
References [ edit ]
Ehle, Byron L. (1969). On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems (PDF) (Thesis).
Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems , Berlin, New York: Springer-Verlag , ISBN 978-3-540-56670-0 .
Hairer, Ernst; Wanner, Gerhard (1996), Solving ordinary differential equations II: Stiff and differential-algebraic problems , Berlin, New York: Springer-Verlag , ISBN 978-3-540-60452-5 .
Hairer, Ernst; Lubich, Christian; Wanner, Gerhard (2006), Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2nd ed.), Berlin, New York: Springer-Verlag , ISBN 978-3-540-30663-4 .