Mitochondrial transcription termination factor, also known as MTERF, is a protein which in humans is encoded by the MTERFgene.[5][6][7][8]
This gene encodes a mitochondrial transcription termination factor. This protein participates in attenuating transcription from the mitochondrial genome; this attenuation allows higher levels of expression of 16S ribosomal RNA relative to the tRNA gene downstream. The product of this gene has three leucine zipper motifs bracketed by two basic domains that are all required for DNA binding. There is evidence that, for this protein, the zippers participate in intramolecular interactions that establish the three-dimensional structure required for DNA binding.[5]
^Asin-Cayuela J, Helm M, Attardi G (April 2004). "A monomer-to-trimer transition of the human mitochondrial transcription termination factor (mTERF) is associated with a loss of in vitro activity". J. Biol. Chem. 279 (15): 15670–7. doi:10.1074/jbc.M312537200. PMID14744862.{{cite journal}}: CS1 maint: unflagged free DOI (link)
^Asin-Cayuela J, Schwend T, Farge G, Gustafsson CM (July 2005). "The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-phosphorylated form". J. Biol. Chem. 280 (27): 25499–505. doi:10.1074/jbc.M501145200. PMID15899902.{{cite journal}}: CS1 maint: unflagged free DOI (link)