MTFMT

From Wikipedia, the free encyclopedia
Jump to: navigation, search
MTFMT
Identifiers
Aliases MTFMT, COXPD15, FMT1, mitochondrial methionyl-tRNA formyltransferase
External IDs MGI: 1916856 HomoloGene: 12320 GeneCards: MTFMT
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_139242

NM_027134

RefSeq (protein)

NP_640335

NP_081410

Location (UCSC) Chr 15: 65 – 65.03 Mb Chr 9: 65.44 – 65.45 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

Mitochondrial methionyl-tRNA formyltransferase is a protein that in humans is encoded by the MTFMT gene.[3]

The protein encoded by this nuclear gene localizes to the mitochondrion, where it catalyzes the formylation of methionyl-tRNA.[3] Recessive-type mutations in MTFMT have been shown to cause mitochondrial disease [4]

Model organisms[edit]

Model organisms have been used in the study of MTFMT function. A conditional knockout mouse line, called Mtfmttm1a(KOMP)Wtsi[9][10] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[11][12][13]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[7][14] Twenty six tests were carried out on mutant mice and two significant abnormalities were observed.[7] During gestation homozygous mutant embryos displayed lethal growth retardation and oedema. In a separate study, no homozygous animals were observed at weaning. The remaining tests were carried out on adult heterozygous mutant animals, but no further abnormalities were seen.[7]

References[edit]

  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ a b "Entrez Gene: Mitochondrial methionyl-tRNA formyltransferase". Retrieved 2011-09-20. 
  4. ^ "Mutations in MTFMT Underlie a Human Disorder of Formylation Causing Impaired Mitochondrial Translation". Retrieved 2012-01-03. 
  5. ^ "Salmonella infection data for Mtfmt". Wellcome Trust Sanger Institute. 
  6. ^ "Citrobacter infection data for Mtfmt". Wellcome Trust Sanger Institute. 
  7. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x. 
  8. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  9. ^ "International Knockout Mouse Consortium". 
  10. ^ "Mouse Genome Informatics". 
  11. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. PMC 3572410Freely accessible. PMID 21677750. doi:10.1038/nature10163. 
  12. ^ Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a. 
  13. ^ Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. PMID 17218247. doi:10.1016/j.cell.2006.12.018. 
  14. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol. 12 (6): 224. PMC 3218837Freely accessible. PMID 21722353. doi:10.1186/gb-2011-12-6-224. 

Further reading[edit]

  • Takeuchi, N.; Kawakami, M.; Omori, A.; Ueda, T.; Spremulli, L. L.; Watanabe, K. (1998). "Mammalian mitochondrial methionyl-tRNA transformylase from bovine liver. Purification, characterization, and gene structure". The Journal of Biological Chemistry. 273 (24): 15085–15090. PMID 9614118. doi:10.1074/jbc.273.24.15085.