Jump to content

Neutron emission

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Addbot (talk | contribs) at 13:43, 26 February 2013 (Bot: Migrating 13 interwiki links, now provided by Wikidata on d:q898923 (Report Errors)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Neutron emitters to left of lower dashed line
Z → 0 1 2 3
n ↓ n  H  He Li 4 5
0 1H Be B 6 7
1 1n 2H 3He 4Li C N 8
2 3H 4He 5Li 6Be 7B 8C 9N O 9
3 4H 5He 6Li 7Be 8B 9C 10N 11O F 10
4 5H 6He 7Li 8Be 9B 10C 12O 13F Ne 11 12
5 6H 7He 8Li 9Be 10B 11C 12N 13O 14F 15Ne Na Mg
6 7H 8He 9Li 10Be 11B 12C 13N 14O 15F 16Ne 17Na 18Mg 13 14
7 9He
10Li
11Be 12B 13C 14N 15O 16F 17Ne 18Na 19Mg Al Si
8 10He 11Li 12Be 13B 14C 15N 16O 17F 18Ne 19Na 20Mg 22Si
9 12Li 13Be 14B 15C 16N 17O 19Ne 20Na 21Mg 22Al 23Si
10 13Li 14Be 15B 16C 17N 18O 19F 20Ne 21Na 22Mg
23Al
24Si
11 15Be 16B 17C 18N 19O 20F 21Ne
22Na
23Mg
24Al
25Si
12 16Be 17B 18C 19N 20O 21F 22Ne 23Na 24Mg 25Al 26Si
13 18B 19C 20N 21O 22F 23Ne
24Na
25Mg
26Al
27Si
14 19B 20C 21N 22O 23F 24Ne 25Na 26Mg 27Al 28Si

Neutron emission is a type of radioactive decay of atoms containing excess neutrons, in which a neutron is simply ejected from the nucleus. Two examples of isotopes which emit neutrons are beryllium-13 (mean life 2.7x10-21 sec) and helium-5 (7x10-22 sec).

Neutron emission usually happens from nuclei that are in an excited state, such as the excited O-17* produced from the beta decay of N-17. The neutron emission process itself is controlled by the nuclear force and therefore is extremely fast, sometimes referred to as "nearly instantaneous." The ejection of the neutron may be as a product of the movement of many nucleons, but it is ultimately mediated by the repulsive action of the nuclear force that exists at extremely short-range distances between nucleons. The life time of an ejected neutron inside the nucleus before it is emitted is usually comparable to the flight time of a typical neutron before it leaves the small nuclear "potential well," or about 10-23 seconds.[1] A synonym for such neutron emission is "prompt neutron" production, of the type that is best known to occur simultaneously with induced nuclear fission. Many heavy isotopes, most notably californium-252, also emit prompt neutrons among the products of a similar spontaneous radioactive decay process, spontaneous fission.

Most neutron emission outside prompt neutron production associated with fission (either induced or spontaneous), is from neutron-heavy isotopes produced as fission products. These neutrons are sometimes emitted with a delay, giving them the term delayed neutrons, but the actual delay in their production is a delay waiting for the beta decay of fission products to produce the excited-state nuclear precursors that immediately undergo prompt neutron emission. Thus, the delay in neutron emission is not from the neutron-production process, but rather its precursor beta decay which is controlled by the weak force, and thus requires a far longer time. The beta decay half lives for the precursors to delayed neutron-emitter radioisotopes, are typically fractions of a second to tens of seconds.

Nevertheless, the delayed neutrons emitted by neutron-rich fission products aid control of nuclear reactors by making reactivity change far more slowly than it would if it were controlled by prompt neutrons alone.

See also

References

  1. ^ "Neutron emission lifetime and why" (PDF). Retrieved 2012-09-17.