Order-5 cubic honeycomb

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Order-5 cubic honeycomb
H3 435 CC center.png
Poincaré disk models
Type Hyperbolic regular honeycomb
Uniform hyperbolic honeycomb
Schläfli symbol {4,3,5}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Cells {4,3} Uniform polyhedron-43-t0.png
Faces square {4}
Edge figure pentagon {5}
Vertex figure Order-5 cubic honeycomb verf.png
icosahedron
Coxeter group BH3, [5,3,4]
Dual Order-4 dodecahedral honeycomb
Properties Regular

The order-5 cubic honeycomb is one of four compact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Description[edit]

It is analogous to the 2D hyperbolic order-5 square tiling, {4,5}

Hyperb gcubic hc constr.pngHyperb gcubic hc.png

Symmetry[edit]

It a radial subgroup symmetry construction with dodecahedral fundamental domains: Coxeter notation: [4,(3,5)*], index 120.

Related polytopes and honeycombs[edit]

It has a related alternation honeycomb, represented by CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png, having icosahedron and tetrahedron cells.

Compact regular honeycombs[edit]

There are four regular compact honeycombs in 3D hyperbolic space:

Four regular compact honeycombs in H3
H3 534 CC center.png
{5,3,4}
H3 435 CC center.png
{4,3,5}
H3 353 CC center.png
{3,5,3}
H3 535 CC center.png
{5,3,5}

543 honeycombs[edit]

There are fifteen uniform honeycombs in the [5,3,4] Coxeter group family, including this regular form:

[5,3,4] family honeycombs
{5,3,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
r{5,3,4}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
rr{5,3,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,3{5,3,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
tr{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1,3{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,2,3{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H3 534 CC center.png H3 534 CC center 0100.png H3 534-0011 center ultrawide.png H3 534-1010 center ultrawide.png H3 534-1001 center ultrawide.png H3 534-1110 center ultrawide.png H3 534-1101 center ultrawide.png H3 534-1111 center ultrawide.png
H3 435 CC center.png H3 435 CC center 0100.png H3 435-0011 center ultrawide.png H3 534-0101 center ultrawide.png H3 534-0110 center ultrawide.png H3 534-0111 center ultrawide.png H3 534-1011 center ultrawide.png
{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
rr{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
2t{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
tr{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,1,3{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,1,2,3{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png

Polytopes with icosahedral vertex figures[edit]

It is in a sequence of polychora and honeycomb with icosahedron vertex figures:

Related polytopes and honeycombs with cubic cells[edit]

It in a sequence of regular polychora and honeycombs with cubic cells. The first polytope in the sequence is the tesseract, and the second is the Euclidean cubic honeycomb.

Rectified order-5 cubic honeycomb[edit]

Rectified order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol r{4,3,5} or 2r{5,3,4}
2r{5,31,1}
Coxeter diagram CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 11.png
Cells r{4,3} Uniform polyhedron-43-t1.png
{3,5} Uniform polyhedron-53-t2.png
Faces triangle {3}
square {4}
Vertex figure Rectified order-5 cubic honeycomb verf.png
pentagonal prism
Coxeter group BH3, [5,3,4]
DH3, [5,31,1]
Properties Vertex-transitive, edge-transitive

The rectified order-5 cubic honeycomb, CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png, has alternating icosahedron and cuboctahedron cells, with a pentagonal prism vertex figure.

H3 435 CC center 0100.png

Related honeycomb[edit]

It can be seen as analogous to the 2D hyperbolic tetrapentagonal tiling, r{4,5} with square and pentagonal faces

There are four rectified compact regular honeycombs:

Four rectified regular compact honeycombs in H3
Image H3 534 CC center 0100.png H3 435 CC center 0100.png H3 353 CC center 0100.png H3 535 CC center 0100.png
Symbols r{5,3,4}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
r{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{3,5,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
r{5,3,5}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Vertex
figure
Rectified order-4 dodecahedral honeycomb verf.png Rectified order-5 cubic honeycomb verf.png Rectified icosahedral honeycomb verf.png Rectified order-5 dodecahedral honeycomb verf.png
r{p,3,5}
Space S3 H3
Form Finite Compact Paracompact Noncompact
Name r{3,3,5}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
r{5,3,5}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{6,3,5}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
r{7,3,5}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
... r{∞,3,5}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Image Stereographic rectified 600-cell.png H3 435 CC center 0100.png H3 535 CC center 0100.png H3 635 boundary 0100.png
Cells
Icosahedron.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform polyhedron-33-t1.png
r{3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cuboctahedron.png
r{4,3}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
r{5,3}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.svg
r{6,3}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 237-2.png
r{7,3}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-2.png
r{∞,3}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png

Truncated order-5 cubic honeycomb[edit]

Truncated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol t{4,3,5}
Coxeter diagram CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells t{4,3} Uniform polyhedron-43-t01.png
{3,5} Uniform polyhedron-53-t2.png
Faces triangle {3}
square {4}
pentagon {5}
Vertex figure Truncated order-5 cubic honeycomb verf.png
pentagonal pyramid
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The truncated order-5 cubic honeycomb, CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png, has truncated cube and icosahedron cells, with a pentagonal pyramid vertex figure.

H3 534-0011 center ultrawide.png

It can be seen as analogous to the 2D hyperbolic truncated order-5 square tiling, t{4,5} with truncated square and pentagonal faces:

H2 tiling 245-6.png

It is similar to the Euclidean (order-4) truncated cubic honeycomb, t{4,3,4}, with octahedral cells at the truncated vertices.

Truncated cubic honeycomb.png

Related honeycombs[edit]

Four truncated regular compact honeycombs in H3
Image H3 435-0011 center ultrawide.png H3 534-0011 center ultrawide.png H3 353-0011 center ultrawide.png H3 535-0011 center ultrawide.png
Symbols t{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t{3,5,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
t{5,3,5}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Vertex
figure
Truncated order-4 dodecahedral honeycomb verf.png Truncated order-5 cubic honeycomb verf.png Truncated icosahedral honeycomb verf.png Truncated order-5 dodecahedral honeycomb verf.png

Bitruncated order-5 cubic honeycomb[edit]

Same as Bitruncated order-4 dodecahedral honeycomb

Cantellated order-5 cubic honeycomb[edit]

Cantellated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol rr{4,3,5}
Coxeter diagram CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cells rr{4,3} Uniform polyhedron-43-t02.png
r{3,5} Uniform polyhedron-53-t1.png
{}x{5} Pentagonal prism.png
Faces triangle {3}
square {4}
pentagon {5}
Vertex figure Cantellated order-5 cubic honeycomb verf.png
wedge
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The cantellated order-5 cubic honeycomb, CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, has rhombicuboctahedron and icosidodecahedron cells, with a wedge vertex figure.

H3 534-0101 center ultrawide.png

Related honeycombs[edit]

It is similar to the Euclidean (order-4) cantellated cubic honeycomb, rr{4,3,4}:

Cantellated cubic honeycomb.png

Cantitruncated order-5 cubic honeycomb[edit]

Cantitruncated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol tr{4,3,5}
Coxeter diagram CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells tr{4,3} Uniform polyhedron-43-t012.png
t{3,5} Uniform polyhedron-53-t12.png
Faces square {4}
pentagon {5}
hexagon {6}
octahedron {8}
Vertex figure Cantitruncated order-5 cubic honeycomb verf.png
Mirrored sphenoid
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The cantitruncated order-5 cubic honeycomb, CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, has rhombicuboctahedron and icosidodecahedron cells, with a mirrored sphenoid vertex figure.

H3 534-0111 center ultrawide.png

Related honeycombs[edit]

It is similar to the Euclidean (order-4) cantitruncated cubic honeycomb, tr{4,3,4}:

2-Kuboktaederstumpf 1-Oktaederstumpf 1-Hexaeder.png
Four cantitruncated regular compact honeycombs in H3
Image H3 534-1110 center ultrawide.png H3 534-0111 center ultrawide.png H3 353-1110 center ultrawide.png H3 535-1110 center ultrawide.png
Symbols tr{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
tr{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
tr{3,5,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{5,3,5}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
Vertex
figure
Cantitruncated order-4 dodecahedral honeycomb verf.png Cantitruncated order-5 cubic honeycomb verf.png Cantitruncated icosahedral honeycomb verf.png Cantitruncated order-5 dodecahedral honeycomb verf.png

Runcinated order-5 cubic honeycomb[edit]

Runcinated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Semiregular honeycomb
Schläfli symbol t0,3{4,3,5}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cells {4,3} Uniform polyhedron-43-t0.png
{5,3} Uniform polyhedron-53-t0.png
{}x{5} Pentagonal prism.png
Faces Square {4}
Pentagon {5}
Vertex figure Runcinated order-5 cubic honeycomb verf.png
octahedron
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The runcinated order-5 cubic honeycomb or runcinated order-4 dodecahedral honeycomb CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, has cube, dodecahedron, and pentagonal prism cells, with an octahedron vertex figure.

H3 534-1001 center ultrawide.png

It is analogous the 2D hyperbolic rhombitetrapentagonal tiling, rr{4,5}, CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.png with square and pentagonal faces:

H2 tiling 245-5.png

Related honeycombs[edit]

It is similar to the Euclidean (order-4) runcinated cubic honeycomb, t0,3{4,3,4}:

Runcinated cubic honeycomb.png
Three runcinated regular compact honeycombs in H3
Image H3 534-1001 center ultrawide.png H3 353-1001 center ultrawide.png H3 535-1001 center ultrawide.png
Symbols t0,3{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,3{3,5,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{5,3,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
Vertex
figure
Runcinated order-5 cubic honeycomb verf.png Runcinated icosahedral honeycomb verf.png Runcinated order-5 dodecahedral honeycomb verf.png

Runcitruncated order-5 cubic honeycomb[edit]

Runctruncated order-5 cubic honeycomb
Runcicantellated order-4 dodecahedral honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol t0,1,3{4,3,5}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells t{4,3} Uniform polyhedron-43-t01.png
rr{5,3} Uniform polyhedron-53-t02.png
{}x{5} Pentagonal prism.png
{}x{8} Octagonal prism.png
Faces Triangle {3}
Square {4}
Pentagon {5}
Octagon {8}
Vertex figure Runcitruncated order-5 cubic honeycomb verf.png
quad-pyramid
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The runcitruncated order-5 cubic honeycomb or runcicantellated order-4 dodecahedral honeycomb CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png, has cube, dodecahedron, and pentagonal prism cells, with a quad-pyramid vertex figure.

H3 534-1101 center ultrawide.png

Related honeycombs[edit]

It is similar to the Euclidean (order-4) runcitruncated cubic honeycomb, t0,1,3{4,3,4}:

Runcitruncated cubic honeycomb.jpg

Omnitruncated order-5 cubic honeycomb[edit]

Omnitruncated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Semiregular honeycomb
Schläfli symbol t0,1,2,3{4,3,5}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells tr{5,3} Uniform polyhedron-53-t012.png
tr{4,3} Uniform polyhedron-43-t012.png
{10}x{} Decagonal prism.png
{8}x{} Octagonal prism.png
Faces Square {4}
Hexagon {6}
Octagon {8}
Decagon {10}
Vertex figure Omnitruncated order-4 dodecahedral honeycomb verf.png
tetrahedron
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The omnitruncated order-5 cubic honeycomb or omnitruncated order-4 dodecahedral honeycomb has Coxeter diagram CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png.

H3 534-1111 center ultrawide.png

Related honeycombs[edit]

It is similar to the Euclidean (order-4) omnitruncated cubic honeycomb, t0,1,2,3{4,3,4}:

Omnitruncated cubic honeycomb1.png

Alternated order-5 cubic honeycomb[edit]

Alternated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol h{4,3,5}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Cells {3,3} Tetrahedron.png
{3,5} Icosahedron.png
Faces triangle {3}
pentagon {5}
Vertex figure Alternated order-5 cubic honeycomb verf.png
icosidodecahedron
Coxeter group DH3, [5,31,1]
Properties quasiregular

In 3-dimensional hyperbolic geometry, the alternated order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). With Schläfli symbol h{4,3,5}, it can be considered a quasiregular honeycomb, alternating icosahedra and tetrahedra around each vertex in an icosidodecahedron vertex figure.

Alternated order 5 cubic honeycomb.png

Related honeycombs[edit]

It has 3 related forms: the cantic order-5 cubic honeycomb, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png, the runcic order-5 cubic honeycomb, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png, and the runcicantic order-5 cubic honeycomb, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png.

Cantic order-5 cubic honeycomb[edit]

Cantic order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol h2{4,3,5}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.png
Cells r{5,3} Icosidodecahedron.png
t{3,5} Truncated icosahedron.png
t{3,3} Truncated tetrahedron.png
Faces Triangle {3}
Pentagon {5}
Hexagon {6}
Vertex figure Truncated alternated order-5 cubic honeycomb verf.png
Rectangular pyramid
Coxeter group DH3, [5,31,1]
Properties Vertex-transitive

The cantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). It has Schläfli symbol h2{4,3,5} and a rectangular pyramid vertex figure.

H3 5311-0110 center ultrawide.png

Runcic order-5 cubic honeycomb[edit]

Runcic order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol h3{4,3,5}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.png
Cells {5,3} Dodecahedron.png
rr{5,3} Small rhombicosidodecahedron.png
{3,3} Tetrahedron.png
Faces Triangle {3}
square {4}
pentagon {5}
Vertex figure Runcinated alternated order-5 cubic honeycomb verf.png
triangular prism
Coxeter group DH3, [5,31,1]
Properties Vertex-transitive

The runcic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). It has Schläfli symbol h3{4,3,5} and a triangular prism vertex figure.

H3 5311-1010 center ultrawide.png

Runcicantic order-5 cubic honeycomb[edit]

Runcicantic order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol h2,3{4,3,5}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.png
Cells t{5,3} Truncated dodecahedron.png
tr{5,3} Great rhombicosidodecahedron.png
t{3,3} Truncated tetrahedron.png
Faces Triangle {3}
square {4}
hexagon {6}
dodecagon {10}
Vertex figure Runcitruncated alternated order-5 cubic honeycomb verf.png
mirrored sphenoid
Coxeter group DH3, [5,31,1]
Properties Vertex-transitive

The runcicantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). It has Schläfli symbol h2,3{4,3,5} and a mirrored sphenoid vertex figure.

H3 5311-1110 center ultrawide.png

See also[edit]

References[edit]

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294-296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V, p212-213)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups