From Wikipedia, the free encyclopedia
Jump to: navigation, search
Skeletal formula of PMDTA
Ball and stick model of PMDTA
Spacefill model of PMDTA
3030-47-5 YesY
ChemSpider 17187 N
EC number 221-201-1
Jmol-3D images Image
PubChem 18196
RTECS number IE2100000
UN number 2734
Molar mass 173.30 g·mol−1
Appearance Colourless liquid
Odor Ichtyal, ammoniacal
Density 830 mg mL−1
Melting point −20 °C (−4 °F; 253 K)
Boiling point 198 °C (388 °F; 471 K)
Vapor pressure 31 Pa (at 20 °C)
Safety data sheet
GHS pictograms The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The skull-and-crossbones pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word DANGER
H302, H311, H314
P280, P305+351+338, P310
EU Index 612-109-00-6
EU classification Toxic T
R-phrases R22, R24, R34
S-phrases (S1/2), S26, S36/37/39
Flash point 53 °C (127 °F; 326 K)
155 °C (311 °F; 428 K)
Explosive limits 1.1–5.6%
Lethal dose or concentration (LD, LC):
  • 232 mg kg−1 (dermal, rabbit)
  • 1.351 g kg−1 (oral, rat)
Related compounds
Related amines
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N verify (what isYesY/N?)
Infobox references

PMDTA, formally N,N,N′,N′,N′′-pentamethyldiethylenetriamine, is an organic compound with the formula [Me2NCH2CH2]2NMe (Me is CH3). PMDTA is a basic, bulky, and flexible, tridentate ligand that is a used in organolithium chemistry.


PMDTA is prepared by methylating diethylenetriamine with formaldehyde and formic acid.[1]

[H2N(CH2)2]2NH + 5 CH2O + 5 HCO2H → [Me2NCH2CH2]2NMe + 5 CO2 + 5 H2O

Comparison with diethylenetriamine[edit]

Unlike diethylenetriamine, all three amines in PDMTA are tertiary. Both PMDTA and diethylenetriamine are tridentate ligands that form two five-membered chelate rings. The σ-donating properties of the amino groups of diethylenetriamine are greater than that of PMDTA in copper(II) complexes.[2] Both ligands can coordinate metal complexes in arrangements where the three nitrogen centers are co-planar or mutually cis.

Organolithium compounds and PMDTA[edit]

Alkyllithium compounds such as n-butyllithium (BuLi) are used to deprotonate weak acids, e.g. hydrocarbons. It is well known that organolithium aggregates are broken up by Lewis bases to give reagents that EW a more efficient base than untreated BuLi.[3] Commonly, the ditertiary amine TMEDA is used in these applications; it binds to the lithium center as a bidentate ligand. PMDTA behaves analogously, but since it is tridentate, it binds more strongly to lithium. In contrast to TMEDA, PMDTA forms monomeric complexes with organolithium compounds. Both amines affect the regiochemistry of metalation.[3][4]

In the PMDTA-n-BuLi adducts, the Li-C bonds are highly polarized, thus increasing the basicity of the butyl group.[5]

The effect of PMDTA on lithium anilide is illustrative of PMDTA's complexing power. The complex, [{PhN(H)Li}3·2PMDTA], is trinuclear, featuring approximately colinear Li+ centers that are three-, four-, and five-coordinate. The central three-coordinate lithium atom is not bonded to PMDTA. One of the terminal Li centers is pseudo-tetrahedral in an N4 coordination sphere. The other terminal lithium atom is five-coordinate and binds to two anilino N centers and the PMDTA.[6]

Transition metal and aluminium complexes[edit]

PMDTA often forms five-coordinate complexes due to steric bulk of the methyl groups. PMDTA stabilize unusual cations. The first cationic derivative of alane. [H2Al(PMDTA)]+[AlH4] was prepared by treating H3AlNMe3 with PMDTA.[5]


  1. ^ Marxer, A.; Miescher, K. (1951). "Über die stufenweise Quaternisierung von aliphatischen Polyaminen. Neue Verbindungen mit ganglienblockierender Wirkung". Helvetica Chimica Acta 34 (3): 924–931. doi:10.1002/hlca.19510340327. 
  2. ^ Angelici, R. J.; Allison, J. W. (1971). "Stability Constants for Amino Acid Coordination by Substituted Diethylenetriamine Complexes of Copper(II) and the Kinetics of Amino Acid Ester Hydrolysis". Inorganic Chemistry 10 (10): 2238–2243. doi:10.1021/ic50104a030. 
  3. ^ a b Strohmann, C.; Gessner, V. H. (2007). "From the Alkyllitium Aggregate [{(nBuLi)2 · PMDTA}2] to Lithiated PMDTA". Angewandte Chemie International Edition 46 (24): 4566–4569. doi:10.1002/anie.200605105. 
  4. ^ Fraenkel, G. (2002). "PMDTA". Encyclopedia of Reagents for Organic Synthesis. Weinheim: Wiley-VCH. pp. 806–813. doi:10.1002/047084289X.rp028. ISBN 0-471-93623-5. 
  5. ^ a b Elschenbroich, C. (2006). Organometallics. Weinheim: Wiley-VCH. pp. 45–46. ISBN 978-3-527-29390-2. 
  6. ^ Barr, D.; Clegg, W.; Cowton, L.; Horsburgh, L.; Mackenzie, F. M.; Mulvey, R. (1995). "Lithium Anilide Complexed by pmdeta: Expectations of a simple monomer, but in Reality an Odd Trinuclear Composition Combining Three-, Four-, and Five-coordinate Lithium". Journal of the Chemical Society, Chemical Communications 1995 (8): 891–892. doi:10.1039/C39950000891.