Jump to content

Phosphorus triiodide

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CheMoBot (talk | contribs) at 13:41, 6 December 2010 (Updating {{chembox}} (no changed fields - added verified revid - updated 'UNII_Ref', 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref') per Chem/Drugbox validation (report [[Wikipedia_talk:Wi). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Phosphorus triiodide
Phosphorus triiodide
Space-filling model of the phosphorus triiodide molecule
Names
IUPAC names
Phosphorus triiodide
Phosphorus(III) iodide
Other names
Triiodophosphine
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.302 Edit this at Wikidata
  • InChI=1S/I3P/c1-4(2)3 checkY
    Key: PZHNNJXWQYFUTD-UHFFFAOYSA-N checkY
  • InChI=1/I3P/c1-4(2)3
    Key: PZHNNJXWQYFUTD-UHFFFAOYAR
  • IP(I)I
Properties
PI3
Molar mass 411.68717 g/mol
Appearance dark red solid
Density 4.18 g/cm3
Melting point 61.2 °C
Boiling point 200 °C (decomp)
Decomposes
Structure
Trigonal pyramidal
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
3
0
2
Flash point non-flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Phosphorus triiodide (PI3) is an unstable red solid which reacts violently with water. It is a common misconception[1] that PI3 is too unstable to be stored; it is, in fact, commercially available. It is widely used in organic chemistry for converting alcohols to alkyl iodides. It is also a powerful reducing agent. Note that phosphorus also forms a lower iodide, P2I4, but the existence of PI5 is doubtful at room temperature.

Properties

PI3 has essentially zero dipole moment in carbon disulfide solution, because the P-I bond has almost no dipole. The P-I bond is also weak; PI3 is much less stable than PBr3 and PCl3, with a standard enthalpy of formation for PI3 of only −46 kJ/ mol (solid). The phosphorus atom has an NMR chemical shift of 178 ppm (downfield of H3PO4).

Reactions

Phosphorus triiodide reacts vigorously with water, producing phosphorous acid (H3PO3) and hydroiodic acid (HI), along with smaller amounts of phosphine and P-P compounds. Alcohols likewise form alkyl iodides, this providing the main use for PI3.

PI3 is also a powerful reducing agent and deoxygenating agent. It reduces sulfoxides to thioethers, even at −78 °C.[2] Meanwhile heating a 1-iodobutane solution of PI3 with red phosphorus causes reduction to P2I4.

Preparation

The usual method or preparation is by the union of the elements, often by addition of iodine to a solution of white phosphorus in carbon disulfide:

P4 + 6 I2 → 4 PI3

Alternatively, PCl3 may be converted to PI3 by the action of hydrogen iodide or certain metal iodides.

Uses

Phosphorus triiodide is commonly used in the laboratory for the conversion of primary or secondary alcohols to alkyl iodides.[3] The alcohol is frequently used as the solvent, on top of being the reactant. Often the PI3 is made in situ by the reaction of red phosphorus with iodine in the presence of the alcohol; for example, the conversion of methanol to give iodomethane:[4]

PI3 + 3 CH
3
OH
→ 3 CH
3
I
+ H
3
PO
3

These alkyl iodides are useful compounds for nucleophilic substitution reactions, and for the preparation of Grignard reagents.

References

  1. ^ L. G. Wade, Jr., Organic Chemistry, 6th ed., p. 477, Pearson/Prentice Hall, Upper Saddle River, New Jersey, USA, 2005.
  2. ^ J. N. Denis, A. Krief (1980). "Phosphorus tri-iodide (PI3), a powerful deoxygenating agent". J. Chem. Soc., Chem. Commun. (12): 544–5. doi:10.1039/C39800000544.
  3. ^ B. S. Furnell et al., Vogel's Textbook of Practical Organic Chemistry, 5th edition, Longman/Wiley, New York, 1989.
  4. ^ King, C. S.; Hartman, W. W. (1943). "Methyl Iodide". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 2, p. 399.