Jump to content

Septic tank: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
DumZiBoT (talk | contribs)
m robot Modifying: ro:Fosă septică
Line 19: Line 19:


==Description==
==Description==
A septic tank generally consists of tanks between the size of 1,000 and 2,000 gallons (4000 - 7500 litres) which is connected to an inlet wastewater pipe at one end and a [[septic drain field]] at the other. These pipe connections are generally made via a T pipe which allows liquid entry and egress without disturbing any crust on the surface. Today the design of the tank usually incorporates two chambers (each of which is equipped with a manhole cover) which are separated by means of a dividing wall which has openings located about midway between the floor and roof of the tank.
A septic tank generally consists of tanks between the size of 1,000 and 2,000 gallons (4000 - 7500 litres) which is connected to an inlet wastewater pipe at one end and a [[septic drain field]] at the other. These pipe connections are generally made via a T pipe which allows liquid entry and egress without disturbing any crust on the surface. Today the design of the tank usually incorporates two chambers (each of which is equipped with a manhole cover) which are separated by means of a dividing wall which has openings located about midway between the floor and roof of the tank. GAY BLACK DILDOS


Wastewater enters the first chamber of the tank, allowing solids to settle and scum to float. The settled solids are anaerobically digested reducing the volume of solids. The liquid component flows through the dividing wall into the second chamber where further settlement takes place with the excess liquid then draining in a relatively clear condition from the outlet into the [[leach field]], also referred to as a drain field, or seepage field, depending upon locality.
Wastewater enters the first chamber of the tank, allowing solids to settle and scum to float. The settled solids are anaerobically digested reducing the volume of solids. The liquid component flows through the dividing wall into the second chamber where further settlement takes place with the excess liquid then draining in a relatively clear condition from the outlet into the [[leach field]], also referred to as a drain field, or seepage field, depending upon locality.

Revision as of 13:49, 12 May 2009

A septic tank before installation
The same tank partially installed in the ground
Septic tank and septic drain field

A septic tank, the key component of a septic system, is a small scale sewage treatment system common in areas with no connection to main sewage pipes provided by private corporations or local governments. (Other components, typically mandated and/or restricted by local governments, optionally include pumps, alarms, sand filters, and clarified liquid effluent disposal means such as a septic drain field, ponds, or peat moss beds.) Septic systems are a type of On-Site Sewage Facility (OSSF). In North America approximately 25% of the population relies on septic tanks; this can include suburbs and small towns as well as rural areas. (Indianapolis is an example of a large city where much of the city's neighborhoods are still on separate septic systems) In Europe they are generally limited to rural areas only.

The term "septic" refers to the anaerobic bacterial environment that develops in the tank and which decomposes or mineralizes the waste discharged into the tank. Septic tanks can be coupled with other on-site wastewater treatment units such as biofilters or aerobic systems involving artificial forced aeration.[1]

Periodic preventive maintenance is required to remove the irreducible solids which settle and gradually fill the tank, reducing its efficiency. In most jurisdictions this maintenance is required by law, yet often not enforced. Those who ignore the requirement will eventually be faced with extremely costly repairs when solids escape the tank and destroy the clarified liquid effluent disposal means. A properly cared-for system, on the other hand, can last for decades and possibly a lifetime.

Description

A septic tank generally consists of tanks between the size of 1,000 and 2,000 gallons (4000 - 7500 litres) which is connected to an inlet wastewater pipe at one end and a septic drain field at the other. These pipe connections are generally made via a T pipe which allows liquid entry and egress without disturbing any crust on the surface. Today the design of the tank usually incorporates two chambers (each of which is equipped with a manhole cover) which are separated by means of a dividing wall which has openings located about midway between the floor and roof of the tank. GAY BLACK DILDOS

Wastewater enters the first chamber of the tank, allowing solids to settle and scum to float. The settled solids are anaerobically digested reducing the volume of solids. The liquid component flows through the dividing wall into the second chamber where further settlement takes place with the excess liquid then draining in a relatively clear condition from the outlet into the leach field, also referred to as a drain field, or seepage field, depending upon locality.

Septic tank lift pump alarm system located in a house.

The remaining impurities are trapped and eliminated in the soil, with the excess water eliminated through percolation into the soil (eventually returning to the groundwater), through evaporation, and by uptake through the root system of plants and eventual transpiration. A piping network, often laid in a stone filled trench (see weeping tile), distributes the wastewater throughout the field with multiple drainage holes in the network. The size of the leach field is proportional to the volume of wastewater and inversely proportional to the porosity of the drainage field. The entire septic system can operate by gravity alone, or where topographic considerations require, with inclusion of a lift pump. Certain septic tank designs include siphons or other methods of increasing the volume and velocity of outflow to the drainage field. This helps to load all portions of the drainage pipe more evenly and extends the drainage field life by preventing premature clogging.

An Imhoff tank is a two-stage septic system where the sludge is digested in a separate tank. This avoids mixing digested sludge with incoming sewage. Also, some septic tank designs have a second stage where the effluent from the anaerobic first stage is aerated before it drains into the seepage field.

Waste that is not decomposed by the anaerobic digestion eventually has to be removed from the septic tank, or else the septic tank fills up and undecomposed wastewater discharges directly to the drainage field. Not only is this bad for the environment, but if the sludge overflows the septic tank into the leach field, it may clog the leach field piping or the soil porosity itself, requiring expensive repairs.

How often the septic tank has to be emptied depends on the volume of the tank relative to the input of solids, the amount of indigestible solids and the ambient temperature (as anaerobic digestion occurs more efficiently at higher temperatures). The required frequency varies greatly depending on jurisdiction, usage, and system characteristics. Some health authorities require tanks to be emptied at prescribed intervals, while others leave it up to the determination of the inspector. Some systems require pumping every few years or sooner, while others may be able to go 10-20 years between pumpings. Contrary to what many believe, there is no "rule of thumb" for how often tanks should be emptied. An older system with an undersized tank that is being used by a large family will require much more frequent pumping than a new system used by only a few people. Anaerobic decomposition is rapidly re-started when the tank re-fills.

A properly designed and normally operating septic system is odour free and, besides periodic inspection and pumping of the septic tank, should last for decades with no maintenance.

A well designed and maintained concrete, fibreglass or plastic tank should last about 50 years.[2]

Potential problems

  1. Excessive dumping of cooking oils and grease can fill up the upper portion of the septic tank and can cause the inlet drains to block. Oils and grease are often difficult to degrade and can cause odor problems and difficulties with the periodic emptying.
  2. Flushing non-biodegradable hygiene products such as sanitary towels and cotton buds will rapidly fill or clog a septic tank; these materials should not be disposed of in this way.
  3. The use of garbage disposers for disposal of waste food can cause a rapid overload of the system and early failure.
  4. Certain chemicals may damage the working of a septic tank, especially pesticides, herbicides, materials with high concentrations of bleach or caustic soda (lye) or any other inorganic materials such as paints or solvents.
  5. Roots from trees and shrubbery growing above the tank or the drain field may clog and or rupture them.
  6. Playgrounds and storage buildings may cause damage to a tank and the drainage field. In addition, covering the drainage field with an impervious surface, such as a driveway or parking area, will seriously affect its efficiency and possibly damage the tank and absorption system.
  7. Excessive water entering the system will overload it and cause it to fail. Checking for plumbing leaks and practising water conservation will help the system's operation.
  8. Even well maintained septic tanks release mucus-producing anaerobic gut bacteria to the drainage field. The mucus "slime" will slowly clog the soil pores surrounding the drain pipe and percolation can slow to the point where backups or surfacing effluent can occur. This slime is called biomat and such a failure is referred to as "Biomat failure"[3].
  9. If the system is damaged or malfunctions, contact your local health or environmental authority before attempting any repairs. Improper repair can result in costly mistakes and potential health hazards.
  10. Septic tanks by themselves are ineffective at removing nitrogen compounds that can cause algae blooms in receiving waters; this can be remedied by using a nitrogen-reducing technology.[1] or by simply ensuring that the leach field is properly sited to prevent direct entry of effluent into bodies of water.

Environmental issues

Some pollutants, especially sulfates, under the anaerobic conditions of septic tanks, are reduced to hydrogen sulfide, a pungent and toxic gas. Likewise, nitrates and organic nitrogen compounds are reduced to ammonia. Because of the anaerobic conditions, fermentation processes take place, which ultimately generate carbon dioxide and methane.

The fermentation processes cause the contents of a septic tank to be anoxic with a low redox potential, which keeps phosphate in a soluble and thus mobilized form. Because phosphate can be the limiting nutrient for plant growth in many ecosystems, the discharge from a septic tank into the environment can trigger prolific plant growth including algal blooms which can also include blooms of potentially toxic cyanobacteria.

Soil capacity to retain phosphorus is large compared with the load through a normal residential septic tank. An exception occurs when septic drain fields are located in sandy or coarser soils on property adjoining a water body. Because of limited particle surface area, these soils can become saturated with phosphate. Phosphate will progress beyond the treatment area, posing a threat of eutrophication to surface waters.[4]

In areas with high population density, groundwater pollution levels often exceed acceptable limits. Some small towns are facing the costs of building very expensive centralized wastewater treatment systems because of this problem, owing to the high cost of extended collection systems.

To slow development, building moratoriums and limits on the subdivision of property are often imposed. Ensuring existing septic tanks are functioning properly can also be helpful for a limited time, but becomes less effective as a primary remediation strategy as population density increases.

Trees in the vicinity of a concrete septic tank have the potential to penetrate the tank as the system ages and the concrete begins to develop cracks and small leaks. Tree roots can cause serious flow problems due to plugging and blockage of drain pipes, but the trees themselves tend to grow extremely vigorously due to the continuous influx of nutrients into the septic system.

Popular culture

In a News From Lake Wobegon monologue entitled "Homecoming", Garrison Keillor told the fictional story of how a character had to dig up an overflowing septic tank from his parents' yard which proved to be a 1932 Chevrolet 2-door coupé.

The Red Green Show featured perhaps the only fictitious septic tank pumper, Winston Rothschild. They would often make references to septic systems when he was on set, such as fake humorous commercials.

See also

References

  1. ^ "Septic Systems for Waste Water Disposal". American Ground Water Trust. Retrieved 2008-05-20.
  2. ^ "Septic Tanks: The Real Poop". University of California Extension. Retrieved 2006-07-11.
  3. ^ Impacts of Septic System chemicals on public health, wildlife, and habitats/ ecosystems:
  4. ^ Craig G. Cogger. "eb1475 Septic System Waste Treatment in Soil". College of Agriculture and Home Economics, Pullman, Washington. Retrieved 2006-07-11.

External links