Graph of
H
n
(
x
)
{\displaystyle \mathrm {H} _{n}(x)}
for
n
∈
[
0
,
1
,
2
,
3
,
4
,
5
]
{\displaystyle n\in [0,1,2,3,4,5]}
In mathematics , Struve functions H α (x ) , are solutions y (x ) of the non-homogeneous Bessel's differential equation :
x
2
d
2
y
d
x
2
+
x
d
y
d
x
+
(
x
2
−
α
2
)
y
=
4
(
x
2
)
α
+
1
π
Γ
(
α
+
1
2
)
{\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}+\left(x^{2}-\alpha ^{2}\right)y={\frac {4\left({\frac {x}{2}}\right)^{\alpha +1}}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}}
introduced by Hermann Struve (1882 ). The complex number α is the order of the Struve function, and is often an integer. The modified Struve functions L α (x ) are equal to −ie − iαπ / 2 H α (ix ) .
Definitions
Since this is a non-homogeneous equation, solutions can be constructed from a single particular solution by adding the solutions of the homogeneous problem. In this case, the homogeneous solutions are the Bessel functions , and the particular solution may be chosen as the corresponding Struve function.
Power series expansion
Struve functions, denoted as H α (x ) have the following power series form
H
α
(
x
)
=
∑
m
=
0
∞
(
−
1
)
m
Γ
(
m
+
3
2
)
Γ
(
m
+
α
+
3
2
)
(
x
2
)
2
m
+
α
+
1
{\displaystyle \mathbf {H} _{\alpha }(x)=\sum _{m=0}^{\infty }{\frac {(-1)^{m}}{\Gamma \left(m+{\frac {3}{2}}\right)\Gamma \left(m+\alpha +{\frac {3}{2}}\right)}}\left({\frac {x}{2}}\right)^{2m+\alpha +1}}
where Γ(z ) is the gamma function .
The modified Struve function, denoted as L ν (z ) have the following power series form
L
ν
(
z
)
=
(
z
2
)
ν
+
1
∑
k
=
0
∞
1
Γ
(
3
2
+
k
)
Γ
(
3
2
+
k
+
ν
)
(
z
2
)
2
k
{\displaystyle \mathbf {L} _{\nu }(z)=\left({\frac {z}{2}}\right)^{\nu +1}\sum _{k=0}^{\infty }{\frac {1}{\Gamma \left({\frac {3}{2}}+k\right)\Gamma \left({\frac {3}{2}}+k+\nu \right)}}\left({\frac {z}{2}}\right)^{2k}}
Another definition of the Struve function, for values of α satisfying Re(α ) > − 1 / 2 , is possible using an integral representation:
H
α
(
x
)
=
2
(
x
2
)
α
π
Γ
(
α
+
1
2
)
∫
0
π
2
sin
(
x
cos
τ
)
sin
2
α
(
τ
)
d
τ
.
{\displaystyle \mathbf {H} _{\alpha }(x)={\frac {2\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\frac {\pi }{2}}\sin(x\cos \tau )\sin ^{2\alpha }(\tau )d\tau .}
For small x , the power series expansion is given above .
For large x , one obtains:
H
α
(
x
)
−
Y
α
(
x
)
→
(
x
2
)
α
−
1
π
Γ
(
α
+
1
2
)
+
O
(
(
x
2
)
α
−
3
)
,
{\displaystyle \mathbf {H} _{\alpha }(x)-Y_{\alpha }(x)\to {\frac {\left({\frac {x}{2}}\right)^{\alpha -1}}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}+O\left(\left({\tfrac {x}{2}}\right)^{\alpha -3}\right),}
where Yα (x ) is the Neumann function .
Properties
The Struve functions satisfy the following recurrence relations:
H
α
−
1
(
x
)
+
H
α
+
1
(
x
)
=
2
α
x
H
α
(
x
)
+
(
x
2
)
α
π
Γ
(
α
+
3
2
)
,
H
α
−
1
(
x
)
−
H
α
+
1
(
x
)
=
2
d
d
x
(
H
α
(
x
)
)
−
(
x
2
)
α
π
Γ
(
α
+
3
2
)
.
{\displaystyle {\begin{aligned}\mathbf {H} _{\alpha -1}(x)+\mathbf {H} _{\alpha +1}(x)&={\frac {2\alpha }{x}}\mathbf {H} _{\alpha }(x)+{\frac {\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {3}{2}}\right)}},\\\mathbf {H} _{\alpha -1}(x)-\mathbf {H} _{\alpha +1}(x)&=2{\frac {d}{dx}}\left(\mathbf {H} _{\alpha }(x)\right)-{\frac {\left({\frac {x}{2}}\right)^{\alpha }}{{\sqrt {\pi }}\Gamma \left(\alpha +{\frac {3}{2}}\right)}}.\end{aligned}}}
Relation to other functions
Struve functions of integer order can be expressed in terms of Weber functions E n and vice versa: if n is a non-negative integer then
E
n
(
z
)
=
1
π
∑
k
=
0
⌊
n
−
1
2
⌋
Γ
(
k
+
1
2
)
(
z
2
)
n
−
2
k
−
1
Γ
(
n
−
k
−
1
2
)
H
n
E
−
n
(
z
)
=
(
−
1
)
n
+
1
π
∑
k
=
0
⌊
n
−
1
2
⌋
Γ
(
n
−
k
−
1
2
)
(
z
2
)
−
n
+
2
k
+
1
Γ
(
k
+
3
2
)
H
−
n
.
{\displaystyle {\begin{aligned}\mathbf {E} _{n}(z)&={\frac {1}{\pi }}\sum _{k=0}^{\left\lfloor {\frac {n-1}{2}}\right\rfloor }{\frac {\Gamma \left(k+{\frac {1}{2}}\right)\left({\frac {z}{2}}\right)^{n-2k-1}}{\Gamma \left(n-k-{\frac {1}{2}}\right)}}\mathbf {H} _{n}\\\mathbf {E} _{-n}(z)&={\frac {(-1)^{n+1}}{\pi }}\sum _{k=0}^{\left\lfloor {\frac {n-1}{2}}\right\rfloor }{\frac {\Gamma (n-k-{\frac {1}{2}})\left({\frac {z}{2}}\right)^{-n+2k+1}}{\Gamma \left(k+{\frac {3}{2}}\right)}}\mathbf {H} _{-n}.\end{aligned}}}
Struve functions of order n + 1 / 2 where n is an integer can be expressed in terms of elementary functions. In particular if n is a non-negative integer then
H
−
n
−
1
2
(
z
)
=
(
−
1
)
n
J
n
+
1
2
(
z
)
{\displaystyle \mathbf {H} _{-n-{\frac {1}{2}}}(z)=(-1)^{n}J_{n+{\frac {1}{2}}}(z)}
where the right hand side is a spherical Bessel function .
Struve functions (of any order) can be expressed in terms of the generalized hypergeometric function 1 F 2 (which is not the Gauss hypergeometric function 2 F 1 ):
H
α
(
z
)
=
(
z
2
)
α
+
1
2
2
π
Γ
(
α
+
3
2
)
1
F
2
(
1
,
3
2
,
α
+
3
2
,
−
z
2
4
)
.
{\displaystyle \mathbf {H} _{\alpha }(z)={\frac {\left({\frac {z}{2}}\right)^{\alpha +{\frac {1}{2}}}}{{\sqrt {2\pi }}\Gamma \left(\alpha +{\tfrac {3}{2}}\right)}}{}_{1}F_{2}\left(1,{\tfrac {3}{2}},\alpha +{\tfrac {3}{2}},-{\tfrac {z^{2}}{4}}\right).}
References
R.M. Aarts and Augustus J.E.M. Janssen (2003). "Approximation of the Struve function H1 occurring in impedance calculations". J. Acoust. Soc. Am . 113 (5): 2635–2637. Bibcode :2003ASAJ..113.2635A . doi :10.1121/1.1564019 . PMID 12765381 .
Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 12" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 496. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 .
Ivanov, A.B. (2001) [1994], "Struve function" , Encyclopedia of Mathematics , EMS Press
Paris, R. B. (2010), "Struve function" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Struve, H. (1882). "Beitrag zur Theorie der Diffraction an Fernröhren". Annalen der Physik und Chemie . 17 (13): 1008–1016. Bibcode :1882AnP...253.1008S . doi :10.1002/andp.18822531319 .
External links