Talk:Foundations of mathematics

From Wikipedia, the free encyclopedia
Jump to: navigation, search
          This article is of interest to the following WikiProjects:
WikiProject Mathematics (Rated B-class, Top-importance)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
B Class
Top Importance
 Field: Foundations, logic, and set theory
This article has comments.
WikiProject Philosophy (Rated Start-class, High-importance)
WikiProject icon This article is within the scope of WikiProject Philosophy, a collaborative effort to improve the coverage of content related to philosophy on Wikipedia. If you would like to support the project, please visit the project page, where you can get more details on how you can help, and where you can join the general discussion about philosophy content on Wikipedia.
Start-Class article Start  This article has been rated as Start-Class on the project's quality scale.
 High  This article has been rated as High-importance on the project's importance scale.
 
This article has an assessment summary page.

Foundations and philosophy of mathematics[edit]


The recently-added text has the bias that a foundation of mathematics is actually possible. Before that the text was balanced and ended with 'the matter remains controversial' without advocating any particular approach. The subject matter after that line belongs in philosophy of mathematics under whatever old school (or new school) believes in it.

The majority of modern mathematicians seem to believe that foundations are either non-existent or unnecessary. They accept neither the positions of the older schools, nor do they accept the cognitive or social foundations theories. Hilary Putnam pointed out that one can accept a sort of weak realism without accepting any form of Platonism tied to Plato's ontology <-- apologies for the lousy condition of that article, it was written by a local sacred idiot.


Article now more complete. Papers at end are critically important to this field and deserve summary treatment as articles, each of them. Particularly as there are fools out there who think realist=Platonist which is just wrong. Calling Putnam in particular a Platonist would piss him off to no end, dude.

Foundations search itself may be scientism. Is that view too contoversial?

Scientism is defined on that page as:
Scientism is the acceptance of scientific theory and scientific methods as applicable in all fields of inquiry, including morality.
Personally I don't see the connection between a search for a Foundation for Mathematics, and say, morality; so I would call it controversial. Chas zzz brown 21:16 Jan 20, 2003 (UTC)
Fine, we'll leave it out. Various arguments about this connection are in Talk:Philosophy_of_mathematic, which I notice you've found, so discuss it there.

Hilary Putnam raised an extremely important point in What Is Mathematical Truth? - which is, that you must consider foundations of mathematics as a quite separate issue from an ontology, which most philosophy of mathematics theories fail to do, as they confuse the two quite hopelessly. Specifically, Putnam said he was a realist but not a Platonist, and was clear that one could believe that mathematical ideas were 'real' without believing in any aspect of Plato's ontology. What he meant was foundation ontology or cosmology it seems, but that aspect or usage of an ontology is not in the ontology article due to it being authored by, as the above claims, a local sacred idiot. According to the existing article there, a foundation ontology is just some kind of comp sci thing, and cosmology is only about physics and religion.

At some point this sacred idiocy must be challenged and Putnam's disctinction accepted and noted in either or both of the ontology and philosophy of mathematics articles, plus here in foundations of mathematics. As it stands, this article is trapped in about 1980 and those are trapped in about 1959, without even acknowledging Wigner's points. This is a bit confusing for anyone who actually knows the topic, and may discourage intelligent contributors, leaving the articles sadly in the hands of local sacred idiots.


Thank you Axel. Chas zzz brown 18:00 Feb 10, 2003 (UTC)


Anyone, a mathematician especially, who appreciates the “unreasonable effectiveness of mathematics” and the “unreasonable ineffectiveness of philosophy" to scientific endeavors must recognize the dangers of letting "philosophy of math" ride roughshod over "foundations of math" and as a last line of defense, of letting "philosophy and foundations of math" ride roughshod over proper pure and applied maths.

Just look at the talk page for "philosophy of math"! What a mess. Note that some of these people actually believe the destiny of science can be mastered thru verbose semantics, concepts, schema, arguments, etc. The last time I looked, the language of science was still written in mathematics. Fortunately, bullshit had not yet taken over in the math journals.

Specialists in foundations and/or philosophy of math often over-estimate the importance of their work to those in other specialties. In fact, few mathematicians are typically concerned on a daily, working basis over logicism, formalism or any other philosophical position. Instead, their primary concern is that the mathematical enterprise as a whole always remains productive ... as evident by the work they are doing at the moment.

Typically, they see this as insured by remaining open-minded, practical and busy; as potentially threatened by becoming overly-ideological, fanatically reductionistic or lazy. I do not know of a name for this “philosophical position” but it may be the one most mathematicians adhere to more strongly than any traditional, philosophical position they also favor or agree with (if any).

I think it would be choice to boldly, truthfully publish that the nihilistic and productive "philosophical positions" are by far the most populus amongst modern mathematicians on the "philosophy of math" and "foundations of math" pages. Let the silent majority be heard at last. Let the fanatical minority, steeped with all of their dreaded, formidable philosophical arguments, just go nuts (as usual). We have nothing to fear from these people. Some of them are just "naked emperors". Some of them are qualified mathematicians but with a strange psychological affliction involving philosophy and/or religion.

OmegaMan

A working perspective[edit]

A working perspective[edit]

This section was moved here from the article. See above for a explanation why. :)

To give an example, in number theory there is a huge body of doctrine, a tiny fraction of which has been developed in a particular axiomatic system, say Peano arithmetic (PA). Most of this work could be developed in PA; as a famous example, the prime number theorem is provable in PRA (Sudac (2001)), a much weaker theory than PA. But the working number theorist is concerned with proving theorems from initial assumptions which are obviously true using proof methods which are obviously correct, not with any particular logical system. In fact, the "crisis"-causing assertions discovered by Gödel are assertions about Diophantine equations, one of the main avenues in number theory. It may or may not be the case that there is a fundamental limit to what humans can understand about numbers (i.e., there may be true number-theoretical principles which cannot be perceived as being true by any human), but Gödel's theorem does not tell us which of these is the case, and we have no way of knowing. It may or may not be that we are required to introduce principles which are not expressible in the language of first order arithmetic in order to decide questions which are (e.g. the consistency of PA), but Gödel's theorem does not tell us which of these is the case, and again we have no way of knowing. It is often asserted that in light of Gödel's theorem one must introduce set-theoretical principles in order to decide certain number theoretical questions, but this assertion is unjustified. Gödel's theorem does not put any such constraints on the nature of the principles involved (i.e. the language in which they must be expressed). The attitude of the working number theorist is thus a reasonable one: one does not spend time thinking about such things, as there is simply no way to know. Instead one continues to prove theorems, and true principles which may be outside this or that logical system will be appealed to as required. Such principles will be introduced by people thinking about and solving actual problems, on the front-line. The problems (assuming there is no limit to what humans can understand about numbers) will be solved by people carrying on in the same way as they did before.

Some doubt[edit]

Under "Group theory", Wantzel gets the credit for the work of Hermite and Lindemann. — Preceding unsigned comment added by 81.171.52.6 (talk) 11:49, 2 September 2014 (UTC)

You are correct, circle squaring was not disproved by Wantzel. I'll try to fix this. Bill Cherowitzo (talk) 21:12, 2 September 2014 (UTC)

Eudoxus[edit]

In the section on ancient Greek mathematics, we have the following:

The discrepancy between rationals and reals was finally resolved by Eudoxus of Cnidus (408–355 BC), a student of Plato, who reduced the comparison of irrational ratios to comparisons of multiples (rational ratios), thus anticipating the definition of real numbers by Richard Dedekind (1831-1916).

As I understand it from reading Eudoxus of Cnidus, what Eudoxus actually did was define equality of two ratios by way of a logical relation between comparisons of each ratio's components: given integers m and n, a/b = c/d if and only if for all R in {<, =, >}, ma R nb if and only if mc R nd. To use this definition to "reduce comparisons of irrational ratios to comparisons of rational ratios", we would need to choose m and n such that ma, nb, mc and nd are all integers. But this is impossible: if m and ma are integers, a = ma/m is rational, contradicting the assumption that it's irrational. Is the article Eudoxus of Cnidus mistaken in asserting that m and n must be integers? For this reduction to work, they must be allowed to be irrational - and possibly not even numbers, albeit still quantifiable, e.g. physical quantities, such as the lengths of two line segments. Hairy Dude (talk) 01:17, 6 September 2015 (UTC)