Jump to content

Tilt test (geotechnical engineering)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Headbomb (talk | contribs) at 03:42, 15 February 2016 (References: clean up, replaced: journal = Bulletin Of the → journal = Bulletin of the using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tilt test on a fitting discontinuity.

In geomechanics, a tilt test is a simple test to estimate the shear strength parameters of a discontinuity.[1][2] Two pieces of rock containing a discontinuity are held in hand or mounted in test equipment with the discontinuity horizontal. The sample is slowly tilted until the top block moves. The angle with the horizontal at onset of movement is called the tilt-angle.

The size of the specimen is limited to 10–20 cm for hand-held tests, while machine-operated tilt test equipment may handle up to meter-sized samples. In the field, the angle can be determined most easily with an inclinometer as present in most geological or structural compasses.

Tilt-angle

The tilt-angle equals the material friction of the discontinuity wall plus the roughness i-angle (tilt-angle = φwall material + i) if no real cohesion is present (i.e. no cementing or gluing material between the two blocks), no infill material is present, the asperities do not break, and the walls of the discontinuity are completely fitting at the start of the test, while if the walls of the discontinuity are completely non-fitting, the tilt-angle equals the friction of the material of the discontinuity walls (tilt-angle = φwall material). If cementation or gluing material is present or asperities break, the tilt-angle represents a combination of the (apparent or real) cohesion and the friction along the discontinuity. If infill material is present, the tilt-angle is governed partially or completely by the infill, depending on the thickness of the infill and height of asperities.[3]

See also

References

  1. ^ Hoek, E.; Bray, J. (1974). Rock slope engineering. London: Institute of Mining and Metallurgy. p. 358. ISBN 978-0-419-16010-6.
  2. ^ Xian-Qin, H.; Cruden, D.M. (1992). "A portable tilting table for on-site tests of the friction angles of discontinuities in rock masses". Bulletin of the International Association of Engineering Geology. 46 (1): 59–62. doi:10.1007/BF02595034.
  3. ^ Phien-wej, N.; Shrestha, U.B.; Rantucci, G. (1990). "Effect of infill thickness on shear behaviour of rock joints". In Barton, N.R.; Stephansson, O. (eds.). Rock Joints. Balkema (Taylor & Francis), Rotterdam. pp. 289–294. ISBN 978-90-6191-109-8. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)

Further reading

  • Price, D.G. (2008). De Freitas, M.H. (ed.). Engineering Geology: Principles and Practice. Springer. p. 450. ISBN 3-540-29249-7.