Triaxial shear test

From Wikipedia, the free encyclopedia
Jump to: navigation, search

'triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil (e.g., sand, clay) and rock, and other granular materials or powders. There are several variations on the test.[1][2][3][4]

In a triaxial shear test, stress is applied to a sample of the material being tested in a way which results in stresses along one axis being different from the stresses in perpendicular directions. This is typically achieved by placing the sample between two parallel platens which apply stress in one ) direction, and applying fluid pressure to the specimen to apply stress in the perpendicular directions. (Testing apparatus which allows application of different levels of stress in each of three orthogonal directions are discussed below, under "True Triaxial test".)

The application of different compressive stresses in the test apparatus causes shear stress to develop in the sample; the loads can be increased and deflections monitored until failure of the sample. During the test, the surrounding fluid is pressurized, and the stress on the platens is increased until the material in the cylinder fails and forms sliding regions within itself, known as shear bands. The geometry of the shearing in a triaxial test typically causes the sample to become shorter while bulging out along the sides. The stress on the platen is then reduced and the water pressure pushes the sides back in, causing the sample to grow taller again. This cycle is usually repeated several times while collecting stress and strain data about the sample. During the test the pore pressures of fluids (e.g., water, oil) or gasses in the sample may be measured using Bishop's pore pressure apparatus.

From the triaxial test data, it is possible to extract fundamental material parameters about the sample, including its angle of shearing resistance, apparent cohesion, and dilatancy angle. These parameters are then used in computer models to predict how the material will behave in a larger-scale engineering application. An example would be to predict the stability of the soil on a slope, whether the slope will collapse or whether the soil will support the shear stresses of the slope and remain in place. Triaxial tests are used along with other tests to make such engineering predictions.

During the shearing, a granular material will typically have a net gain or loss of volume. If it had originally been in a dense state, then it typically gains volume, a characteristic known as Reynolds' dilatancy. If it had originally been in a very loose state, then contraction may occur before the shearing begins or in conjunction with the shearing.

Sometimes, testing of cohesive samples is done with no confining pressure, in an unconfined compression test. This requires much simpler and less expensive apparatus and sample preparation, though the applicability is limited to samples that the sides won't crumble when exposed, and the confining stress being lower than the in-situ stress gives results which may be overly conservative. The compression test performed for concrete strength testing is essentially the same test, on apparatus designed for the larger samples and higher loads typical of concrete testing.

Test Execution[edit]

For soil samples, the specimen is contained in a cylindrical latex sleeve with a flat, circular metal plate or platen closing off the top and bottom ends. This cylinder is placed into a bath of a hydraulic fluid to provide pressure along the sides of the cylinder. The top platen can then be mechanically driven up or down along the axis of the cylinder to squeeze the material. The distance that the upper platen travels is measured as a function of the force required to move it, as the pressure of the surrounding water is carefully controlled. The net change in volume of the material can also be measured by how much water moves in or out of the surrounding bath, but is typically measured - when the sample is saturated with water - by measuring the amount of water that flows into or out of the sample's pores.


For testing of high-strength rock, the sleeve may be a thin metal sheeting rather than latex. Triaxial testing on strong rock is fairly seldom done because the high forces and pressures required to break a rock sample require costly and cumbersome testing equipment.

Effective Stress[edit]

The effective stress on the sample can be measured by using a porous surface on one platen, and measuring the pressure of the fluid (usually water) during the test, then calculating the effective stress from the total stress and pore pressure.

Triaxial test to determine the shear strength of a discontinuity[edit]

The triaxial test can be used to determine the shear strength of a discontinuity. A homogeneous and isotropic sample fails due to shear stresses in the sample. If a sample with a discontinuity is orientated such that the discontinuity is about parallel to the plane in which maximum shear stress will be developed during the test, the sample will fail due to shear displacement along the discontinuity, and hence, the shear strength of a discontinuity can be calculated.[5]

Types of Triaxial Tests[edit]

There are several variations of the triaxial test:

Consolidated Drained (CD)[edit]

In a consolidated drained test the sample is consolidated and sheared in compression slowly to allow pore pressures built up by the shearing to dissipate. The rate of axial deformation is kept constant, i.e., is strain controlled. The idea is that the test allows the sample and the pore pressures to fully consolidate (i.e., adjust) to the surrounding stresses. The test may take a long time to allow the sample to adjust, in particular low permeability samples need a long time to drain and adjust strain to stress levels.

Consolidated Undrained (CU)[edit]

In a consolidated undrained test the sample is not allowed to drain. The shear characteristics are measured under undrained conditions and the sample is assumed to be fully saturated. Measuring the pore pressures in the sample (sometimes called CUpp) allows approximating the consolidated-drained strength.

Unconsolidated Undrained (UU)[edit]

In an unconsolidated undrained test the loads are applied quickly, and the sample is not allowed to consolidate during the test. The sample is compressed at a constant rate (strain-controlled).

True Triaxial Test[edit]

Three-axis triaxial testing systems have been developed to allow independent control of the stress in three perpendicular directions. This allows investigation of stress paths not capable of being generated in axisymmetric triaxial test machines, which can be useful in studies of cemented sands and anisotropic soils. The test cell is cubical, and there are six separate plates applying pressure to the specimen, with LVDTs reading movement of each plate.[6] Pressure in the third direction can be applied using hydrostatic pressure in the test chamber, requiring only 4 stress application assemblies. The apparatus is significantly more complex than for axisymmetric triaxial tests, and is therefore less commonly used.

Test standards[edit]

The list is not complete; only the main standards are included. For a more extensive listing, please refer to the websites of ASTM International (USA), British Standards (UK), International Organization for Standardization (ISO), or local organisations for standards.

  • ASTM WK3821 (2011): New Test Method for Consolidated Drained Triaxial Compression Test for Soils (under development)[7]
  • ASTM D4767-11 (2011): Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils[8]
  • ASTM D2850-03a (2007): Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils[9]
  • BS 1377-9:1990 Part 8: Shear strength tests (effective stress)Triaxial Compression Test[10]
  • ISO/TS 17892-8:2004 Geotechnical investigation and testing—Laboratory testing of soil—Part 8: Unconsolidated undrained triaxial test[11]
  • ISO/TS 17892-9:2004 Geotechnical investigation and testing—Laboratory testing of soil—Part 9: Consolidated triaxial compression tests on water-saturated soils[12]


  1. ^ Bardet, J.-P. (1997). Experimental Soil Mechanics. Prentice Hall. ISBN 978-0-13-374935-9. 
  2. ^ Head, K.H. (1998). Effective Stress Tests, Volume 3, Manual of Soil Laboratory Testing, (2nd ed.). John Wiley & Sons. ISBN 978-0-471-97795-7. 
  3. ^ Holtz, R.D.; Kovacs, W.D. (1981). An Introduction to Geotechnical Engineering. Prentice-Hall, Inc. ISBN 0-13-484394-0. 
  4. ^ Price, D.G. (2009). De Freitas, M.H., ed. Engineering Geology: Principles and Practice. Springer. p. 450. ISBN 3-540-29249-7. 
  5. ^ Goodman, R.E. (1989). Introduction to Rock Mechanics. Wiley; 2 edition. p. 576. ISBN 978-0-471-81200-5. 
  6. ^ Reddy, K.R.; Saxena, S.K.; Budiman, J.S. (June 1992). "Development of A True Triaxial Testing Apparatus" (pdf). Geotechnical Testing Journal (ASTM) 15 (2): 89–105. 
  7. ^ ASTM WK3821 (2011). New Test Method for Consolidated Drained Triaxial Compression Test for Soils (under development). (ASTM International, West Conshohocken, PA, 2003). 
  8. ^ ASTM D4767-11 (2011). Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. ASTM International, West Conshohocken, PA, 2003. doi:10.1520/D4767-11. 
  9. ^ ASTM D2850 - 03a (2007). Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. ASTM International, West Conshohocken, PA, 2003. doi:10.1520/D2850-03AR07. 
  10. ^ BS 1377-1 (1990). Methods of test for soils for civil engineering purposes. General requirements and sample preparation. BSI. ISBN 0-580-17692-4. 
  11. ^ ISO/TS 17892-8:2004 (2007). Geotechnical investigation and testing - Laboratory testing of soil - Part 8: Unconsolidated undrained triaxial test. International Organization for Standardization. p. 24. 
  12. ^ ISO/TS 17892-9:2004 (2007). Geotechnical investigation and testing -- Laboratory testing of soil -- Part 9: Consolidated triaxial compression tests on water-saturated soils. International Organization for Standardization. p. 30. 

See also[edit]