Tris(dimethylamino)methane

From Wikipedia, the free encyclopedia
Tris(dimethylamino)methane
Names
Preferred IUPAC name
N,N,N,N,N,N-Hexamethylmethanetriamine
Other names
N,N,N,N,N,N-hexamethylmethanetriamine
[bis(dimethylamino)methyl]dimethylamine
Identifiers
3D model (JSmol)
ECHA InfoCard 100.024.804 Edit this at Wikidata
UNII
  • InChI=1S/C7H19N3/c1-8(2)7(9(3)4)10(5)6/h7H,1-6H3
    Key: MUMVIYLVHVCYGI-UHFFFAOYSA-N
  • CN(C)C(N(C)C)N(C)C
Properties
C7H19N3
Molar mass 145.250 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tris(dimethylamino)methane (TDAM) is the simplest representative of the tris(dialkylamino)methanes of the general formula (R2N)3CH in which three of the four of methane's hydrogen atoms are replaced by dimethylamino groups (−N(CH3)2).[1] Tris(dimethylamino)methane can be regarded as both an amine and an orthoamide.

Tris(dimethylamino)methane is a strong base and can be used as a formylation agent, as aminomethylenation reagent and as a source for the basic bis(dimethylamino)carbene of the formula (R2N)2C:.[2]

Preparation[edit]

Tris(dimethylamino)methane is formed in the reaction of N,N,N′,N′-Tetramethylformamidinium chloride (TMF-Cl)[1][3][4] or bis(dimethylamino)acetonitrile[5] with lithium dimethylamide or sodium dimethylamide with yields between 55 and 84%.[2]

Synthesis of TDAM from TMF-Cl and lithium dimethylamide
Synthesis of TDAM from TMF-Cl and lithium dimethylamide

From dimethylamine and trimethoxyborane sodium dimethylamide is formed in situ in the presence of sodium hydride which reacts with N,N,N,N-tetramethylformamidinium chloride in 84% yield to tris(dimethylamino)methane and with bis(dimethylamino)acetonitrile in 77% yield.[6]

Synthesis of TDAM from TMF-Cl and sodium dimethylamide with trimethoxyborane
Synthesis of TDAM from TMF-Cl and sodium dimethylamide with trimethoxyborane

The reaction of the dimethylformamide (DMF) dimethylacetal, HC(OCH3)2N(CH3)2, (from the DMF–dimethyl sulfate complex and sodium methoxide[7]) with dimethylamine in the presence of the acidic catalyst 2,4,6-tri-tert-butylphenol (which is largely stable to the alkylating agent) produces tris(dimethylamino)methane.[8]

Synthesis of TDAM from the dimethylacetal of DMF
Synthesis of TDAM from the dimethylacetal of DMF

Tris(dimethylamino)methane is formed in good yield (83%) in the reaction of DMF with tetrakis(dimethylamino)titanium(IV).[9]

Synthesis of TDAM from DMF with tetrakis(dimethylamino)titanium(IV)
Synthesis of TDAM from DMF with tetrakis(dimethylamino)titanium(IV)

N,N,N,N,N″,N″-Hexamethylguanidinium chloride (readily obtainable by dimethylamine and N,N,N,N-tetramethylchloroformamidinium chloride derived from tetramethylurea and phosgene[10]) forms tris(dimethylamino)methane in 53% yield under the exposure of the reducing agent sodium bis(2-methoxyethoxy)aluminium hydride (Red-Al).[11]

Sodium hydride and trimethyl borate reduce N,N,N,N,N″,N″-hexamethylguanidinium chloride in 80% yield to tris(dimethylamino)methane.[6]

Synthesis of TDAM from hexamethylguanidinium chloride
Synthesis of TDAM from hexamethylguanidinium chloride

Properties[edit]

Tris(dimethylamino)methane is a clear, colorless or pale yellow liquid with a strong ammoniacal odor. The compound is freely miscible with many non-polar aprotic and water-free solvents. However, when heated tris(dimethylamino)methane reacts with protic solvents (such as water or alcohols) but also with weak CH-acidic substances, such as acetone or acetonitrile.[2]

Upon heating to 150–190 °C decomposition occurs with the formation of tetrakis(dimethylamino)ethene,[12] a strong electron donor.[13]

Synthesis of tetrakis(dimethylamino)ethene
Synthesis of tetrakis(dimethylamino)ethene

Applications[edit]

Tris(dimethylamino)methane dissociates into N,N,N,N-tetramethylformamidinium cations and dimethylamide anions, which abstract protons from CH- and NH-acidic compounds. The anions thus formed add to the formamidinium cations which in turn eliminate dimethylamine and react to form dimethylaminomethylene compounds (= CH−N(CH3)2) or amidines by aminomethyleneation.[1]

Reaction to form a methyl α-cyano-β-dimethylaminoacrylate:

Synthesis of methyl α-cyano-β-dimethylaminoacrylate
Synthesis of methyl α-cyano-β-dimethylaminoacrylate

Reaction to form N,N-dimethyl-N-p-nitrophenylformamidine:

N,N-Dimethyl-N′-p-nitrophenylformamidine synthesis with TDAM
N,N-Dimethyl-N-p-nitrophenylformamidine synthesis with TDAM

Aminomethylenation provides intermediates for the synthesis of heterocycles such as pyrimidines, pyrazoles, 1,4-dihydropyridines and indoles.

N,N,N,N-Tetramethylselenourea is accessible by the extended heating of tris(dimethylamino)methane with selenium in xylene, bis(dimethylamino)carbene is suggested as an intermediate.[14]

Synthesis of tetramethylselenourea with TDAM
Synthesis of tetramethylselenourea with TDAM

Related reagent[edit]

References[edit]

  1. ^ a b c Bredereck, H.; Effenberger, F.; Brendle, T. (1966). "Synthese und Reaktionen von Trisdimethylaminomethan" [Synthesis and reaction of tris(dimethylamino)methane]. Angewandte Chemie (in German). 78 (2): 147–148. Bibcode:1966AngCh..78..147B. doi:10.1002/ange.19660780212.
  2. ^ a b c Kantlehner, W. (2001). "Tris(dimethylamino)methane". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rt403. ISBN 0-471-93623-5.
  3. ^ DE 1217391, Bredereck, H.; Effenberger, F. & Brendle, T., "Verfahren zur Herstellung von Tris-dimethylaminomethan (Process for the production of tris(dimethylamino)methane)", issued 1966-12-08, assigned to Bredereck, H. 
  4. ^ Bredereck, H.; Effenberger, F.; Brendle, T.; Muffler, H. (1968). "Orthoamide. V. Synthese von Tris-dialkylamino-methanen" [Orthoamides. V. Synthesis of tris(dimethylamino)methane]. Chemische Berichte (in German). 101 (5): 1885–1888. doi:10.1002/cber.19681010541.
  5. ^ Kantlehner, W.; Maier, T.; Speh, P. (1979). "Tris(dialkylamino)methane und Tetraalkylformamidinium-Thiocyanate aus Bis(dialkylamino)acetonitrilen" [Tris(dialkylamino)methanes and tetraalkylformamidinium thiocyanates from bis(dialkylamino)acetonitriles]. Synthesis (in German). 1979 (5): 342–343. doi:10.1055/s-1979-28671. S2CID 97378246.
  6. ^ a b Kantlehner, W.; Stieglitz, R.; Hauber, M.; Haug, E.; Regele, C. (2000). "Orthoamide. LII. Beiträge zur Synthese von Orthocarbonsäureamiden" [Orthoamides. LII. Articles on the synthesis of carboxylic acid orthoamides]. Journal für praktische Chemie (in German). 342 (3): 256–268. doi:10.1002/(SICI)1521-3897(200003)342:3<256::AID-PRAC256>3.0.CO;2-G.
  7. ^ Bredereck, H.; Effenberger, F.; Simchen, G. (1961). "Reaktionsfähige Säureamid-Dimethylsulfat-Komplexe" [Reactive acid amide–dimethyl sulfate complexes]. Angewandte Chemie (in German). 73 (14): 493. Bibcode:1961AngCh..73..493B. doi:10.1002/ange.19610731407.
  8. ^ DE 2214497, Leimgruber, W. & Wick, A. E., "Verfahren zur Herstellung eines aminosubstituierten Methanderivates (Process for the manufacture of an amino-substituted methane derivative)", issued 1972-10-05, assigned to F. Hoffmann-La Roche & Co. AG 
  9. ^ Weingarten, H.; White, W. A. (1966). "A novel amination reaction of carboxylic acid derivatives with tetrakis(dimethylamino)titanium". Journal of the American Chemical Society. 88 (4): 850. doi:10.1021/ja00956a049.
  10. ^ Kantlehner, W.; Haug, E.; Mergen, W. W.; Speh, P.; Maier, T.; Kapassakalidis, J. J.; Bräuner, H. J.; Hagen, H. (1983). "Ein Herstellungsverfahren für N,N,N,N,N″,N″-Hexaalkylguanidinium-chloride" [A manufacturing process for N,N,N,N,N″,N″-hexaalkylguanidinium chlorides]. Synthesis (in German). 1983 (11): 904–905. doi:10.1055/s-1983-30558. S2CID 93420838.
  11. ^ Kantlehner, W.; Speh, P.; Bräuner, H. J. (1983). "Eine einfache Synthese für Tris(dialkylamino)methane" [A simple synthesis for tris(dialkylamino)methanes]. Synthesis (in German). 1983 (11): 905–906. doi:10.1055/s-1983-30559. S2CID 101466032.
  12. ^ Bredereck, H.; Effenberger, F.; Bredereck, H. J. (1966). "Eine neue Synthese von Tetra(dimethylamino)äthylen" [A new synthesis of tetra(dimethylamino)ethylene] (PDF). Angewandte Chemie (in German). 78 (21): 984. Bibcode:1966AngCh..78..984B. doi:10.1002/ange.19660782113.
  13. ^ Wiberg, N.; Buchler, J. W. (1962). "Tetrakis(dimethylamino)äthylen: Ein starker Elektronendonator" [Tetrakis(dimethylamino)ethylene: A strong electron donor]. Angewandte Chemie (in German). 74 (14): 490–491. Bibcode:1962AngCh..74..490W. doi:10.1002/ange.19620741410.
  14. ^ Kantlehner, W.; Hauber, M.; Vettel, M. (1996). "Orthoamide. IL. Umsetzungen von Orthoamid-Derivaten mit Schwefel und Selen, Synthesen von 1,3-Thiazol- und 1,3-Selenazolderivaten" [Orthoamides. XLIX. Reactions of orthoamide derivatives with sulfur and selenium, syntheses of 1,3-thiazole and 1,3-selenazole derivatives]. Journal für praktische Chemie (in German). 338 (1): 403–413. doi:10.1002/prac.19963380180.