Uranium hydride bomb

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The uranium hydride bomb was a variant design of the atomic bomb first suggested by Robert Oppenheimer in 1939 and advocated and tested by Edward Teller.[1] It used deuterium, an isotope of hydrogen, as a neutron moderator in a uranium-deuterium ceramic compact. Unlike all other fission-based weapon types, the concept relies on a chain reaction of slow nuclear fission (see neutron temperature). Bomb efficiency was adversely affected by the cooling of neutrons since the latter delays the reaction, as delineated by Rob Serber in his 1992 extension of the original Los Alamos Primer.[2]

The term hydride for this type of weapons has been subject to misunderstandings in the open literature. While the "hydride" might erroneously imply that the isotope used is hydrogen, only deuterium has been used for the bomb pits. The nomenclature is used in a manner similar to the term "hydrogen bomb," where the latter employs deuterium and occasionally tritium.[3]

Two uranium deuteride fueled bombs are known to have been tested, the Ruth and Ray test shots during Operation Upshot–Knothole. Both tests produced a yield comparable to 200 tons of TNT each, and were considered to be fizzles.[1][4] All other nuclear weapons programs have relied on fast neutrons in their weapons designs.

The mangled tower for the Ruth test. The explosion failed to level the testing tower, only somewhat damaging it.


During early phases of Manhattan Project, in 1943, uranium deuteride[Note 1] was investigated as a promising bomb material; it was abandoned by early 1944 as it turned out such design would be inefficient.[5] The "autocatalytic" design that emerged from this early research was "Elmer", the discontinued radial-implosion Mark 2 weapon. It made use of uranium deuteride particles coated with paraffin (to reduce the pyrophoricity of UD3) and boron-10 carbide (B4C) wax distributed uniformly throughout the solid core.[Note 2] A composite lead and B4C tamper was envisioned, with about 10.5 kg of active material (i.e. UD3) in one version, and a BeO tamper with 8.45 kg of active material in another.[3]:260

The heavy hydrogen (deuterium) in uranium deuteride (UD3) or plutonium deuteride (PuD3) moderates (slows down) the neutrons, thereby increasing the nuclear cross section for neutron absorption. The result should have been a lower required critical mass, concordantly reducing the amount of pure 235U or 239Pu needed for a weapon explosion.[6] At the same time, due to the moderating effect of deuterium,[2] the compression requirements are (at least in principle) relaxed somewhat, which would permit assembly of additional fissile material in the core, as well as a radial-implosion assembly, which was much simpler and compact than the one destined for the MK 3.[3]:258 In reality the result was that the slower neutrons delayed the reaction time too much by reducing the number of fission generations accomplished; especially as the core expanded to reach its snowplow region (where all nuclear reactions cease), more neutrons could escape from the turbulent surface of the core, and before enough energy (for military applications) could be produced. In all, neutron moderation sharply reduced the efficiency of the weapon before the inertial confinement failed.[6][2] It was realised that the end result would be a fizzle instead of full-scale detonation of the device. The predicted energy yield was around 1 kilotonne of TNT (4.2 TJ),[7] if the core operated as originally expected; the first rough estimate for the behaviour of the "hydride" bomb appeared in 1944, when James Conant forecasted that 1 kt of energy would be obtained from about 9 kg of UD3.[8]

Post war, Los Alamos physicists continued research on the subject at low priority; while a Monte-Carlo simulation in December 1949[3]:258 showed that the core could in principle work and result in a weapon considerably smaller than the MK 5, strong skepticism arose as the inherently low efficiency of the fuel would not improve even remotely as theoretically envisioned when a hollow core and boosting were incorporated, and a proposed test of such a core in an MK 4 high-explosive assembly was ultimately stricken from the preliminary shot schedule of operation Greenhouse.[3]:259

A cartoon by George Gamow showing the MK 2 "Elmer" and the MK 8 "Elsie" weapons, depicting the MK 2 (the "good fellow") as clumsy and unattractive.

UCRL tests[edit]

Film of the Ruth detonation.

Skepticism from Los Alamos notwithstanding, Edward Teller remained interested in the concept, and he and Ernest Lawrence experimented with such devices in the early 1950s at the UCRL, (University of California Radiation Laboratory, later Lawrence Livermore National Laboratory). Optimism in the new lab prompted UCRL to even propose a class of such "small weapons" making use of the material, dubbing it as the "Geode". The "Geode"-type devices would be compact, linear (two-point) implosion, gas-boosted fission weapons using hollow spheroidal metallic uranium, or partially ("slightly") moderated cores, where a metallic uranium or plutonium shell was lined internally with UD3[Note 3] producing yields of the order of 10 kt. Applications for this class of devices would be tactical nuclear weapons, as well as primaries for compact thermonuclear systems.[1] The "Geodes" were essentially forerunners of the "Swan" and its derivatives (like the "Swift" and "Swallow" devices).[Note 4][9]:6

Two test devices were fielded in 1953 as part of operation Upshot–Knothole. The principal aim of the University of California Radiation Laboratory designs was a preliminary[10]:202 nucleonics investigation for a spherical deuterated polyethylene charge containing uranium deuteride[11]:chap 15 as a candidate thermonuclear fuel for the "Radiator", an early incarnation of the "Morgenstern".[10]:203 It was hoped that deuterium would fuse (become an active medium) in the secondary's core if compressed appropriately through radiation implosion. The fuel was selected so that UCRL's thermonuclear program would not compete with LASL's on scarce materials at the time, specifically lithium.[Note 5][10]:24 If successful, the devices could also lead to a compact primary containing minimal amount of fissile material, and powerful enough to ignite Ramrod[10]:149 the other Mark 22 nuclear bomb prototype designed by UCRL at the time. For a hydride-type primary, the degree of compression would not make deuterium to fuse, thus the design would be essentially a pure fission weapon, not a boosted one.[3]:258 The devices themselves as tested in Upshot-Knothole were experimental systems, not weapon prototypes, and were not designed to be used as weapons, or thermonuclear primaries.[10]:202 The cores consisted of a mix of uranium deuteride (UD3),[10]:202 powder-compacted with deuterated polyethylene. No boron was used. The cores tested in Upshot-Knothole used different "mix" (or enrichment) of uranium moderated by deuterium.[3]:260 The predicted yield was 1.5 to 3 kt for Ruth (with a maximum potential yield of 20 kt[12]:96) and 0.5-1 kt for Ray. The tests produced yields of about 200 tons of TNT each; both tests were considered to be fizzles.[13]

Ruth, which used deuterium and enriched uranium in a solid spherical pit with a natural uranium tamper, was the first device almost-entirely designed at Livermore; it was fired on March 31, 1953 at 05:00 local time (13:00 GMT) at Mercury, Nevada. The explosive device, "Hydride I",[Note 6] used a MK-6 HE assembly made of Composition B and Baratol explosive lenses,[12]:198 and an XMC-305 betatron was providedfor initiation through photofission,[12]:96 weighed 7,400 lb (3,400 kg) and was 56 inches (140 cm) in diameter and 66 inches (170 cm) long. The nuclear system weighed 6,750 lb (3,060 kg). Defying the 1.5–3 kt predictions, its actual yield was only 200 tons. Wally Decker, a young Laboratory engineer, characterized the sound the shot made as "pop." The device failed to "automatically declassify" its test site, where the lower 100 ft (30 m) of the 300-foot (91 m) testing tower remained intact, the middle third scattered across the test area and only the upper third vaporized.[13]

The second device, tested in the Ray event, used deuterium and a different concentration of enriched uranium in its solid spherical pit.[12]:98 The device was called "Hydride II",[Note 7] and it also used a MK-6 HE assembly[12]:198; it was likewise initiated by an XMC-305 betatron fired at known time.[12]:96 Being a sister device to "Hydride I", the "Hydride II" device only had a different pit "fuel" mix, and shared the same dimensions and weight with the Ruth test device.[12]:96 It was fired in a cab, atop a 100-foot (30 m) tower on April 11, 1953. Although shot Ray leveled its tower, the yield was a meager 220 tons;[15]:101 while it did better than Ruth, the yield was still about a tenth of the predicted 0.5–1 kt value.


  1. ^ The unclassified name was "Manticore" as seen from Francis, Warhead Politics.
  2. ^ The distribution of boron-10 was apparently more useful,[3]:260 and it did away with the earlier and cumbersome "Boron Bubble" scheme.[2]
  3. ^ hence the name geodes, which usually consist of spheroidal cavities lined internally with crystals.[9]:213
  4. ^ The names of the devices all followed the initials of Small Weapons.[9]:50
  5. ^ The idea of cheap thermonuclear fuels was pursued by UCRL with the design of the "Water Boiler", a primitive type of two-stage thermonuclear gadgets and an early design concept of the "Radiator", that would use heavy water solutions of uranyl fluoride. They were essentially transferred from LASL to UCRL and follow-up investigations to experiments from 1952 conducted in LASL on behalf of Teller, and shortly before the latter's departure from LASL to the newly fledged UCRL.[10]:207
  6. ^ The unclassified name was "Basilisk I" as seen from Francis, Warhead Politics[14].
  7. ^ The unclassified name was "Basilisk II" as seen from Francis, Warhead Politics.
  1. ^ a b c Operation Upshot-Knothole
  2. ^ a b c d Serber, Robert (1992). The Los Alamos Primer: The First Lectures on How To Build an Atomic Bomb.
  3. ^ a b c d e f g h Hansen, Chuck (1995). Swords of Armageddon. I. Retrieved 2016-12-28.
  4. ^ W48 - globalsecurity.org
  5. ^ "Lying well". Bulletin of the Atomic Scientists. Books.google.com. 50 (4): 2. July 1994. Retrieved 2010-02-07.
  6. ^ a b Hoddeson, Lillian; Paul W. Henriksen; et al. (2004). Critical Assembly: A Technical History of Los Alamos During the Oppenheimer Years, 1943-1945 (Google Books). Cambridge University Press. ISBN 0-521-54117-4. Retrieved December 15, 2008.
  7. ^ Operation Upshot-Knothole (Nuclear Weapon Archive)
  8. ^ Conant, James (1944). Findings to Trip to L.A. 1944.
  9. ^ a b c Hansen, Chuck (1995). Swords of Armageddon. IV. Retrieved 2016-12-28.
  10. ^ a b c d e f g Hansen, Chuck (1995). Swords of Armageddon. III. Retrieved 2016-12-28.
  11. ^ Herken, Gregg (2003). Brotherhood of the Bomb.
  12. ^ a b c d e f g Hansen, Chuck (1995). Swords of Armageddon. VII. Retrieved 2016-12-28.
  13. ^ a b Carey Sublette. "Operation Upshot-Knothole 1953 - Nevada Proving Ground." Nuclear Weapon Archive. Retrieved on 2008-05-04.
  14. ^ page 2 of archive listing of pdfs. Page 69 of warhead politics.
  15. ^ Operation Upshot-Knothole Summary Report of the Technical Director. 1953. Retrieved 2019-02-17.