Jump to content

User:Lntnguyen/sandbox/Nanocomposite Hydrogels

From Wikipedia, the free encyclopedia

Nanocomposite Hydrogels (NC gels) are nanomaterial-filled, hydrated, polymeric networks that exhibit higher elasticity and strength compared to traditionally made hydrogels. The combination of organic (polymer) and inorganic (clay) structure gives these hydrogels improved physical, chemical, electrical, biological, and swelling/de-swelling properties that can not be achieved by either material alone.[1] Inspired by flexible biological tissues, researchers incorporate carbon-based, polymeric, ceramic and/or metallic nanomaterials to give these hydrogels superior characteristics like optical properties and stimulus-sensitivity which can potentially be very helpful to medical (especially drug delivery and stem cell engineering) and mechanical fields.[2]

Synthesis[edit]

The synthesis of nanocomposite hydrogels is a process that requires specific material and method. These polymers need to be made up of equally spaced out, 30mm in diameter, clay platelets that can swell and exfoliate in the presence of water. The clay platelets act as crosslinks to create modified functionality that enables the hydrogels to have superior elasticity and toughness that resembles closely to that of biological tissue.[3] Using clay platelets that do not swell or exfoliate in water, using an organic crosslinker such as N,N-methylenebisacrylamide(BIS), mixing of clay and BIS, or preparing nanocomposite hydrogels in a method other than crosslink will not be successful.[4]

Despite all the specifications, the process of synthesizing nanocomposite hydrogels is simple and because of the flexible nature of the material, these hydrogels can be easily made to come in different shapes such as huge blocks, sheets, thin films, rods, hollow tubes, spheres, bellows and uneven sheets.[5]

Properties[edit]

Mechanical Properties[edit]

Nanocomposite hydrogels can withstand stretching, bending, knotting, crushing and other modifications due to its toughness.

Tensile properties[edit]

Tensile testings were performed on nanocomposite hydrogels to measure the stress and strain it experiences when elongated under room temperature. The results show that this material can be stretched up to 1000% of its original length.[6]

Compression properties[edit]

Hysterisis is used to measure the compression properties of nanocomposite hydrogels, which shows that this material can withstand around 90% compression. This data shows that nanocomposite hydrogels exhibit superior strength when compared with conventionally-made hydrogels, which would have been broken down under less compression.

Swelling And Stimulus-Sensitivity[edit]

Swelling/De-swelling[edit]

The porous network of clay particles enable nanocomposite hydrogels to swell in the presence of water. Swelling (and de-swelling) distiguishes NC gels from conventionally-made hydrogels (OR gels) as it is a property that OR gels do not have. The swelling property of NC gels allows them to collect the surrounding aqueous solution instead of being dissolved by it, which makes them the perfect candidate for drug delivery carriers.[7]

Stimulus-Sensitivity[edit]

Nanocomposite hydrogels are observed to be temperature sensitive and will change temperature when their surrounding is altered.[8] Inorganic salts, when absorbed, will result in changing the hydrogels to a lower temperature whereas cat-ionic surfactant will shift the temperature the other way. The temperature of these hydrogels are around 40 degrees Celsius, making it a possible candidate for use as biomaterial.[9] The stimulus-sensitivity of hydrogels allow for a responsive release system where the hydrogels can be designed to deliver the drug in response to changes in condition of the body.

Types of Nanocomposite hydrogels[edit]

Nanocomposite Hydrogels from Carbon-based Nanomaterials[edit]

Nanocomposite hydrogels that are enforced with carbon-based nanomaterials are mechanically tough and electrically conducive, which make them suitable for use in biomedicine, tissue engineering, drug delivery, biosensing, etc. The electrical conducting property of these hydrogels allow them to mimic the characteristic of nerve, muscle, and cardiac tissues. However, even though these nanocomposite hydrogels demonstrate some functions of actual human tissue in lab environment, further research is needed to make sure of their utility as tissue replacement.[10]

Nanocomposite Hydrogels from Polymeric Nanoparticles[edit]

Nanocomposite hydrogels incorporated with polymeric nanoparticles are tailored for drug delivery and tissue engineering. The addition of polymeric nanoparticles gives these hydrogels a reinforced polymeric network that is more stiff and has the ability to enclose hydrophilic and hydrophobic drugs along with genes and proteins. The high stress-absorbing property makes them a potential candidate for cartilage tissue engineering.[10]

Nanocomposite Hydrogels From Inorganic Nanoparticles[edit]

Most inorganic nanoparticles used for nanocomposite hydrogels are already present in and necessary for the body and therefore do not present any negative impacts on the body. Some of them, like calcium and silicon, help with prevention of bone loss and skeletal development. Others, like nanoclays, improve the structural formation and characteristics of hydrogels where they acquire self-healing properties, flame retardant structures, elasticity, super gas-barrier membrane, oil-repellence, etc. The unique properties obtained by incorporating nanocomposite hydrogels with inorganic nanoparticles will let researchers work on improving bone-related tissue engineering.[10]

Nanocomposite Hydrogels from Metal and Metal-Oxide Nanoparticles[edit]

The electrical and thermal conductivity and magnetic property of metals enhance the electrical conductivity and antibacterial property of nanocomposite hydrogels when incorporated. The electrical conducting property is necessary for the hydrogels to start forming functional tissues and be used as imaging agents, drug delivery systems, conductive scaffolds, switchable electronics, actuators, and sensors.[11]

Applications[edit]

Researchers have been looking for a material that can mimic tissue properties to make the tissue engineering process more effective and less invasive to the human body. The porous, interconnecting network of nanocomposite hydrogels, created through cross-link, enable wastes and nutrients to easily enter and exit the structure, and their elastomeric properties let them acquire the desired anatomical shape without needing prior molding. The porous structure of this material would also make the process of drug delivery easier where the pharmaceutical compounds present in the hydrogel can easily escape and be absorbed by the body. Aside from that, researchers are also looking into incorporating nanocomposite hydrogels with silver nanoparticles for antibacterial applications and microorganism elimination in medical and food packing and water treatment.

Tissue Engineering[edit]

As tissue replacements, nanocomposite hydrogels need to interact with cells and form functional tissues. With the incorporated nanoparticles and nanomaterials, these hydrogels can mimic the physical, chemical, electrical, and biological properties of most native tissue. Each type of nanocomposite hydrogels has its own unique properties that let it mimic certain types of human tissue.

Drug Delivery[edit]

The emergence of nanocomposite hydrogels allow for more site-specific and time-controlled delivery of drugs of different sizes at improved safety and specificity. Depending on the method of inserting drugs into the material, for example, dissolved, encased, or attached, the drug carrier will be named differently - nanoparticles, nanospheres (where the drug is evenly dispersed throughout the polymeric network), or nanocapsules (where the drug is surrounded by a polymer shell structure).[7] The elastomeric nature of this material allows for the hydrogels to obtain the shape of the targeted site and therefore the hydrogels can be manufactured identically and used on every patient.[12]

Antibacterial Applications[edit]

Silver nanoparticles are inserted into the 3D polymeric networks of nanocomposite hydrogels for applications in antibacterial activity and improvement in electrical conductance. The presence of silver ions either stop the respiratory enzyme from transferring electrons to oxygen molecules during respiration or prevent proteins from reacting with thiol groups (-SH) on bacteria membrane, both result in the death of bacteria and microorganism without damaging human cells.[13] The size of these silver nanoparticles need to be small enough to pass through the cell membrane and therefore further research is required to manufacture them into appropriate sizes.

See also[edit]

Gel Nanomaterials Cross-link

References[edit]

  1. ^ Wang, Qun (08/2015). "Nanocomposite Hydrogels and Their Applications in Drug Delivery and Tissue Engineering". Journal of Biomedical Nanotechnology. {{cite web}}: Check date values in: |date= (help)
  2. ^ Song, Fangfang; Li, Xiaoqiong; Wang, Qun; Liao, Liqiong; Zhang, Chao. "Nanocomposite Hydrogels and Their Applications in Drug Delivery and Tissue Engineering". Journal of Biomedical Nanotechnology. 11 (1): 40–52. doi:10.1166/jbn.2015.1962.
  3. ^ "Wiley Online Library: Not Found". doi:10.1002/1521-4095(20020816)14:16%3c1120::aid-adma1120%3e3.0.co;2-9/epdf. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ Haraguchi, Kazutoshi (22 May 2008). "Nanocomposite hydrogels" (PDF).
  5. ^ Haraguchi, Kazutoshi (2007-09-01). "Nanocomposite Gels: New Advanced Functional Soft Materials". Macromolecular Symposia. 256 (1): 120–130. doi:10.1002/masy.200751014. ISSN 1521-3900.
  6. ^ Haraguchi, Kazutoshi (2007-06-01). "Nanocomposite hydrogels". Current Opinion in Solid State and Materials Science. 11 (3–4): 47–54. doi:10.1016/j.cossms.2008.05.001.
  7. ^ a b Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram (2008-12-14). "Hydrogel nanoparticles in drug delivery". Advanced Drug Delivery Reviews. 2008 Editors' Collection. 60 (15): 1638–1649. doi:10.1016/j.addr.2008.08.002.
  8. ^ Haraguchi, Kazutoshi; Li, Huan-jun; Song, Liyuan. "<title>The unique optical and physical properties of soft, transparent, stimulus-sensitive nanocomposite gels</title>". Liquid Crystals XI. doi:10.1117/12.734714.
  9. ^ Xia, Mengge; Wu, Weijie; Liu, Fengwei; Theato, Patrick; Zhu, Meifang (2015-08-01). "Swelling behavior of thermosensitive nanocomposite hydrogels composed of oligo(ethylene glycol) methacrylates and clay". European Polymer Journal. 69: 472–482. doi:10.1016/j.eurpolymj.2015.03.072.
  10. ^ a b c Gaharwar, Akhilesh K.; Peppas, Nicholas A.; Khademhosseini, Ali (2014-03-01). "Nanocomposite hydrogels for biomedical applications". Biotechnology and bioengineering. 111 (3): 441–453. doi:10.1002/bit.25160. ISSN 0006-3592. PMC 3924876. PMID 24264728.
  11. ^ "Hydrogels: smart materials for drug delivery : Oriental Journal of Chemistry". www.orientjchem.org. Retrieved 2015-11-09.
  12. ^ "Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly (ethylene glycol) and hydroxyapatite nanoparticles". www.academia.edu. Retrieved 2015-11-09.
  13. ^ "Development and Characterization of Semi-IPN Silver Nanocomposite Hydrogels for Antibacterial Applications". International Journal of Carbohydrate Chemistry. 2013.

External links[edit]