User:Marcipangris/Sandbox
Names | |
---|---|
IUPAC name
(3Z,5E,7R,8S,10S,11Z,13S,14R,15S,17S,20R,21S,22S)-22-[(2S,3Z)-hexa-3,
5-dien-2-yl]-8,10,14,20-tetrahydroxy-7,13,15,17, 21-pentamethyl-1-oxacyclodocosa-3,5,11-trien-2-one | |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
PubChem CID
|
|
UNII | |
| |
| |
Properties | |
C31H50O6 | |
Molar mass | 518.73 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
(+)-Discodermolide is a recently discovered polyketide natural product found to be a potent inhibitor of tumor cell growth. The molecule's carbon skeleton is made up of eight polypropionate and four acetate units with 13 stereocenters.
History
[edit]Discodermolide was first isolated in 1990 from the Caribbean marine sponge Discodermia dissoluta by chemist Dr. Sarath Gunasekera and biologist Dr. Ross Longley, scientists at the Harbor Branch Oceanographic Institution.[1][2][3] The sponge contained 0.002% of discodermolide (7 mg/434 g of sponge). Since the compound is light-sensitive, the sponge must be harvested at a minimum depth of 33 meters. Discodermolide was initially found to have immunosuppressive and antifungal activities.
Mechanism of action and structure
[edit]Discodermolide has been shown to inhibit the proliferation of human cells by arresting the cell cycle in G2- and M-phase. It hyper-stabilizes microtubules, especially prevalent during cell division. Hyper-stabilization of the mitotic spindle causes cell cycle arrest and cell death by apoptosis. Over a variety of cell lines, activity has been measured at IC50 = 3-80 nM.
Discodermolide competes with paclitaxel for microtubule binding, but with higher affinity[4][5][6] and is also effective in paclitaxel- and in epothilone-resistant cancer cells.[7]. Discodermolide also seems to demonstrate a remarkably consistent 3D molecular conformation in the solid-state, in solution and when bound to tubulin; molecules with the conformational flexibility of discodermolide usually present very different conformations in different environments[8].
Biosynthesis
[edit]Many marine-derived polyketides that are often found in sponges cannot be cultured out of their natural environment.Finding the genes responsible for the biosynthesis of a sponge derived polyketides is a difficult task to accomplish because of the sponges’ colonial nature.[citation needed] Scientists are not yet able to culture the sponges; therefore, the genes for the biosynthesis of (+)-discodermolide have not yet been discovered.[1]
Total syntheses
[edit]Several total syntheses have been published to date by Schreiber[9][10], Smith[11][12][13], Paterson[14], Marshall[15], and Myles[16]. A review of the various synthetic approaches has also been published.[17][2]
Clinical development
[edit]The Harbor Branch Oceanographic Institution licensed (+)-discodermolide to Novartis, which began a phase 1 clinical trial in 2004. Patient accrual was halted due to drug toxicity.[18] Amos B. Smith's research group, in collaboration with Kosan Biosciences, has a preclinical drug development program ongoing.[19]
The compound supply necessary for complete clinical trials cannot be met by harvesting, isolation, and purification. As of 2005, attempts at synthesis or semi-synthesis by fermentation have proven unsuccessful. As a result, all discodermolide used in preclinical studies and clinical trials has come from large-scale total synthesis.[20][21]
The chemistry of palladium-catalyzed reactions developed by professor Richard F. Heck, Ei-ichi Negishi and Akira Suzuki, allowed chemists to carry out key coupling steps on-route to the final product; discodermolide. These three gentelmen were recognized for their ground breaking work with the Nobel prize in 2010.
See also
[edit]References
[edit]- ^ Shaw, S. J.; Zhang, D.; Sundermann, K. F.; Myles, D. C. Fragment Assembly: An Alternative Approach to Generating Complex Polyketides. Synthetic Commun. 2005, 35, 1735-1743.
- ^ Roche, C.; Roux, R. L.; Haddad, m.; Phansavath, P.; Genet, J.-P. A Ruthenium-Mediated Asymmetric Hydrogenation Approach to the Synthesis of Discodermolide Subunits. SYNLETT 2009, 4, 573-576.
- ^ Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K. J. Org. Chem. 1990, 55, 4912-4915. (doi:10.1021/jo00303a029)
- ^ Gunasekera, S. P.; Pomponi, S. A.; Longley, R. E.; U.S. patent 5,840,750, November 24, 1998.
- ^ Gunasekera, S. P.; Paul, G. K.; Longley, R. E.; Isbrucker, R. A.; Pomponi, S. A. J. Nat. Prod. 2002, 65, 1643.
- ^ Ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M., Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996, 35, 243-250. (Abstract)
- ^ Hung, D. T.; Chen, J.; Schreiber, S. L. Chem Biol. 1996, 3, 287-293. (Abstract)
- ^ Klein, L. E.; Freeze, B. S.; Smith, A. B.; Horwitz, S. B. Cell Cycle 2005, 4, 501-507. (Article)
- ^ Jordan, M. A. Curr. Med. Chem.: Anti-Cancer Agents 2002, 2, 1.
- ^ Jogalekar, A. S.; Kriel, F. H.; Shi, Q.; Cornett, B.; Cicero, D.; Snyder, J. P. J. Med. Chem. 2010, 53, 155-165. (doi:10.1021/jm9015284)
- ^ Nerenberg, J. B.; Hung, D. T.; Somers, P. K.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 12621-12622. (doi:10.1021/ja00079a066)
- ^ Hung, D. T.; Nerenberg, J. B.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 11054-11080. (doi:10.1021/ja961374o)
- ^ Smith, A. B. III. et al. J. Am. Chem. Soc. 1995, 117, 12011-12012. (doi:10.1021/ja00153a030)
- ^ Smith, A. B.; Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122, 8654-8664. (Article)
- ^ Smith, A. B.; Freeze, B. S.; Xian, M.; Hirose, T. Org. Lett. 2005, 7, 1825-1828.
- ^ Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P. Angew. Chem. Int. Ed. Engl. 2000, 39, 377. (Article)
- ^ Marshall, J. A.; Johns, B. A. J. Org. Chem. 1998, 63, 7885-7892. (doi:10.1021/jo9811423)
- ^ Harried, S. S.; Yang, G.; Strawn, M. A.; Myles, D. C. J. Org. Chem. 1997, 62, 6098-6099. (doi:10.1021/jo9708093)
- ^ Smith, A. B., III; Freeze, B. S. Tetrahedron 2008, 64, 261-298.
- ^ A phase I pharmacokinetic (PK) trial of XAA296A (Discodermolide) administered every 3 wks to adult patients with advanced solid malignancies. 2004 ASCO Annual Meeting (Abstract and Presentation Slides)
- ^ Amos B. Smith, III Current Research Projects
- ^ Mickel, S. J. et al. Org. Process Res. Dev. 2004, 8, 92, 101, 107, 113 and 122.
- ^ Wulff research group (PDF)
External links
[edit]- Chemical and Engineering News: Scaled-Up Synthesis of Discodermolide by Michael Freemantle
- Chemistry and Biology of Discodermolide
- The Betzer and Ardisson Synthesis of (+)-Discodermolide