This is not a Wikipedia article : It is an individual user's work-in-progress page, and may be incomplete and/or unreliable. For guidance on developing this draft, see Wikipedia:So you made a userspace draft . Finished writing a draft article? Are you ready to request an experienced editor review it for possible inclusion in Wikipedia? Submit your draft for review!
Caratheodory Dimension Structures form the basis for many aspects of modern dimension theory.
Let
X
{\displaystyle X}
be a set,
F
{\displaystyle {\mathcal {F}}}
a collection of subsets of
X
{\displaystyle X}
, and
η
,
ψ
,
ξ
:
F
→
[
0
,
∞
)
{\displaystyle \eta ,\psi ,\xi :{\mathcal {F}}\rightarrow [0,\infty )}
be set functions satisfying the following conditions:
∅
∈
F
,
η
(
∅
)
=
0
,
ψ
(
∅
)
=
0
{\displaystyle \emptyset \in {\mathcal {F}},\eta (\emptyset )=0,\psi (\emptyset )=0}
∀
U
∈
F
,
U
≠
∅
we have that
η
(
U
)
>
0
,
ψ
(
U
)
>
0
{\displaystyle \forall U\in {\mathcal {F}},U\neq \emptyset {\mbox{ we have that }}\eta (U)>0,\psi (U)>0}
∀
δ
>
0
,
∃
ε
>
0
such that
η
(
U
)
≤
δ
∀
U
∈
F
with
ψ
(
U
)
≤
ε
{\displaystyle \forall \delta >0,\exists \varepsilon >0{\mbox{ such that }}\eta (U)\leq \delta \forall U\in {\mathcal {F}}{\mbox{ with }}\psi (U)\leq \varepsilon }
∀
ε
>
0
,
∃
finite or countable subcollection
G
⊂
F
covering
F
, with
ψ
(
G
)
:=
s
u
p
{
ψ
(
U
)
:
U
∈
G
}
≤
ε
{\displaystyle \forall \varepsilon >0,\exists {\mbox{ finite or countable subcollection }}{\mathcal {G}}\subset {\mathcal {F}}{\mbox{ covering }}{\mathcal {F}}{\mbox{, with }}\psi ({\mathcal {G}}):=sup\{\psi (U):U\in {\mathcal {G}}\}\leq \varepsilon }
If these hold, say
F
,
ξ
,
η
,
ψ
{\displaystyle {\mathcal {F}},\xi ,\eta ,\psi }
introduce a Caratheodory dimension structure or C-structure
τ
{\displaystyle \tau }
on
X
{\displaystyle X}
, and write
τ
=
(
F
,
ξ
,
η
,
ψ
)
{\displaystyle \tau =({\mathcal {F}},\xi ,\eta ,\psi )}
. Note especially that (almost) restriction at all is placed on
ξ
{\displaystyle \xi }
Caratheodory Dimension [ edit ]
Given a set
X
{\displaystyle X}
endowed with a C-structure as above,
α
∈
R
,
ε
>
0
{\displaystyle \alpha \in \mathbb {R} ,\varepsilon >0}
and a set
Z
⊂
X
{\displaystyle Z\subset X}
. Can define
M
C
(
Z
,
α
,
ε
)
=
inf
G
{
∑
U
∈
G
ξ
(
U
)
η
(
U
)
α
}
{\displaystyle M_{C}(Z,\alpha ,\varepsilon )={\text{inf}}_{G}\{\sum _{U\in {\mathcal {G}}}\xi (U)\eta (U)^{\alpha }\}}
where the infimum is over all countable subcollections
G
⊂
F
{\displaystyle {\mathcal {G}}\subset {\mathcal {F}}}
covering Z, with
ψ
(
G
)
≤
ε
{\displaystyle \psi (G)\leq \varepsilon }
.
M
C
{\displaystyle M_{C}}
is non-decreasing as
ε
{\displaystyle \varepsilon }
decreases. Therefore we can define:
m
C
(
Z
,
α
)
=
lim
ε
→
0
M
C
(
Z
,
α
,
ε
)
{\displaystyle m_{C}(Z,\alpha )=\lim _{\varepsilon \rightarrow 0}M_{C}(Z,\alpha ,\varepsilon )}
m
C
(
⋅
,
α
)
{\displaystyle m_{C}(\cdot ,\alpha )}
is the
α
{\displaystyle \alpha }
-Caratheodory Outer measure
It can be shown that
m
C
(
Z
,
α
C
)
{\displaystyle m_{C}(Z,\alpha _{C})}
can be
0
,
∞
{\displaystyle 0,\infty }
, or a finite positive number, and that the following is well defined.
The Caratheodory dimension of a set
Z
⊂
X
{\displaystyle Z\subset X}
is defined as:
dim
C
Z
=
inf
{
α
:
m
C
(
Z
,
α
)
=
0
}
=
sup
{
α
:
m
C
(
Z
,
α
)
=
∞
}
{\displaystyle {\text{dim}}_{C}Z={\text{inf}}\{\alpha :m_{C}(Z,\alpha )=0\}={\text{sup}}\{\alpha :m_{C}(Z,\alpha )=\infty \}}
Hausdorff dimension , and Topological entropy can be defined using Caratheodory dimension by choosing a suitable C-structure.
A caratheodory dimension structure can be defined on
R
n
{\displaystyle \mathbb {R} ^{n}}
as follows:
F
{\displaystyle {\mathcal {F}}}
is the collection of open sets ,
∀
U
∈
F
,
ξ
(
U
)
=
1
,
η
(
U
)
=
ψ
(
U
)
=
diam
(
U
)
{\displaystyle \forall U\in {\mathcal {F}},\xi (U)=1,\eta (U)=\psi (U)={\text{diam}}(U)}
Pesin, Yakov B. (1997). Dimension Theory in Dynamical Systems . Chicago Lectures in Mathematics.
Category:Dimension_theory