Jump to content

2023 in archosaur paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 132: Line 132:
* A pathological third [[metatarsal]] of ''[[Phuwiangvenator]]'', indicating that the bone experienced a [[greenstick fracture]] and healed before the animal's death, is described from the [[Lower Cretaceous]] [[Sao Khua Formation]] ([[Khon Kaen province|Khon Kaen]], [[Thailand]]) by Samathi ''et al''. (2023).<ref>{{Cite journal |last1=Samathi |first1=Adun |last2=Weluwanarak |first2=Jakkrapat |last3=Duanyai |first3=Punyawee |last4=Kaikaew |first4=Siripat |last5=Suteethorn |first5=Suravech |date=2023-01-13 |title=An unusual metatarsal of theropod dinosaur from the lower cretaceous of Thailand: the first detailed study of paleopathology in Megaraptora |journal=Historical Biology |language=en |pages=1–6 |doi=10.1080/08912963.2023.2166833 |s2cid=255902629 |issn=0891-2963}}</ref>
* A pathological third [[metatarsal]] of ''[[Phuwiangvenator]]'', indicating that the bone experienced a [[greenstick fracture]] and healed before the animal's death, is described from the [[Lower Cretaceous]] [[Sao Khua Formation]] ([[Khon Kaen province|Khon Kaen]], [[Thailand]]) by Samathi ''et al''. (2023).<ref>{{Cite journal |last1=Samathi |first1=Adun |last2=Weluwanarak |first2=Jakkrapat |last3=Duanyai |first3=Punyawee |last4=Kaikaew |first4=Siripat |last5=Suteethorn |first5=Suravech |date=2023-01-13 |title=An unusual metatarsal of theropod dinosaur from the lower cretaceous of Thailand: the first detailed study of paleopathology in Megaraptora |journal=Historical Biology |language=en |pages=1–6 |doi=10.1080/08912963.2023.2166833 |s2cid=255902629 |issn=0891-2963}}</ref>
* A study estimating the number of [[telencephalic]] [[neuron]]s in theropod dinosaurs is published by [[Suzana Herculano-Houzel|Herculano-Houzel]] (2023), who argues that ''[[Allosaurus]]'' and ''[[Tyrannosaurus]]'' are endotherms with baboon- and monkey-like numbers of neurons;<ref>{{Cite journal|last=Herculano-Houzel |first=S.|title=Theropod dinosaurs had primate-like numbers of telencephalic neurons|journal=Journal of Comparative Neurology|year=2023|doi=10.1002/cne.25453|pmid=36603059}}</ref> however, this study has been criticized.<ref>{{cite news|date=2023-01-10|author=Rodrigo Pérez Ortega|title=Some dinos may have been as brainy as modern primates, controversial study argues|publisher=Science.org|url=https://www.science.org/content/article/some-dinos-may-have-been-brainy-modern-primates-controversial-study-argues}}</ref>
* A study estimating the number of [[telencephalic]] [[neuron]]s in theropod dinosaurs is published by [[Suzana Herculano-Houzel|Herculano-Houzel]] (2023), who argues that ''[[Allosaurus]]'' and ''[[Tyrannosaurus]]'' are endotherms with baboon- and monkey-like numbers of neurons;<ref>{{Cite journal|last=Herculano-Houzel |first=S.|title=Theropod dinosaurs had primate-like numbers of telencephalic neurons|journal=Journal of Comparative Neurology|year=2023|doi=10.1002/cne.25453|pmid=36603059}}</ref> however, this study has been criticized.<ref>{{cite news|date=2023-01-10|author=Rodrigo Pérez Ortega|title=Some dinos may have been as brainy as modern primates, controversial study argues|publisher=Science.org|url=https://www.science.org/content/article/some-dinos-may-have-been-brainy-modern-primates-controversial-study-argues}}</ref>
* The study suggesting that [[carnosaur]]s like ''Allosaurus'' were primarily scavengers that fed on sauropod carcasses, originally published by Pahl and Ruedas (2021)<ref name="Pahl2021">{{Cite journal|last1=Pahl|first1=Cameron C.|last2=Ruedas|first2=Luis A.|year=2021|title=Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs|journal=Ecological Modelling|volume=458|pages=109706|doi=10.1016/j.ecolmodel.2021.109706| issn=0304-3800 }}</ref> is criticized by Kane ''et al.'' (2023)<ref>{{Cite journal |last=Kane |first=Adam |last2=Healy |first2=Kevin |last3=Ruxton |first3=Graeme D. |year=2023 |title=Was Allosaurus really predominantly a scavenger? |url=https://www.sciencedirect.com/science/article/pii/S0304380022003453 |journal=Ecological Modelling |volume=476 |pages=110247 |doi=10.1016/j.ecolmodel.2022.110247 |issn=0304-3800}}</ref> but later defended by Pahl and Ruehdas (2023).<ref>{{Cite journal |last=Pahl |first=Cameron C. |last2=Ruedas |first2=Luis A. |date=2023-03-01 |title=Allosaurus was predominantly a scavenger |url=https://www.sciencedirect.com/science/article/pii/S0304380022003593 |journal=Ecological Modelling |language=en |volume=477 |pages=110261 |doi=10.1016/j.ecolmodel.2022.110261 |issn=0304-3800}}</ref>
* Evidence of preservation of elements associated with bone remodeling and redeposition (sulfur, calcium, zinc) in a specimen of ''Tyrannosaurus rex'', interpreted as indicative of preservation of original endogenous chemistry in the studied specimen, is presented by Anné ''et al.'' (2023).<ref>{{Cite journal|last1=Anné |first1=J. |last2=Canoville |first2=A. |last3=Edwards |first3=N. P. |last4=Schweitzer |first4=M. H. |last5=Zanno |first5=L. E. |title=Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of ''Tyrannosaurus rex'' |year=2023 |journal=Biology |volume=12 |issue=2 |at=264 |doi=10.3390/biology12020264 |pmid=36829540 |pmc=9953530 |doi-access=free }}</ref>
* Evidence of preservation of elements associated with bone remodeling and redeposition (sulfur, calcium, zinc) in a specimen of ''Tyrannosaurus rex'', interpreted as indicative of preservation of original endogenous chemistry in the studied specimen, is presented by Anné ''et al.'' (2023).<ref>{{Cite journal|last1=Anné |first1=J. |last2=Canoville |first2=A. |last3=Edwards |first3=N. P. |last4=Schweitzer |first4=M. H. |last5=Zanno |first5=L. E. |title=Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of ''Tyrannosaurus rex'' |year=2023 |journal=Biology |volume=12 |issue=2 |at=264 |doi=10.3390/biology12020264 |pmid=36829540 |pmc=9953530 |doi-access=free }}</ref>
* A study on the formation and function of the enlarged [[ungual]]s of alvarezsauroid and therizinosaur theropods is published by Qin ''et al.'' (2023), who interpret their findings as indicative of the evolution of digging adaptions in late-diverging alvarezsauroids, find the unguals of early-branching therizinosaurs to perform well in piercing and pulling, and interpret the enlarged unguals of ''[[Therizinosaurus]]'' as not adapted to functions that required considerable stress-bearing.<ref>{{cite journal |last1=Qin |first1=Z. |last2=Liao |first2=C.-C. |last3=Benton |first3=M. J. |last4=Rayfield |first4=E. J. |year=2023 |title=Functional space analyses reveal the function and evolution of the most bizarre theropod manual unguals |journal=Communications Biology |volume=6 |at=181 |doi=10.1038/s42003-023-04552-4 |pmid=36797463 |pmc=9935540 | doi-access = free }}</ref>
* A study on the formation and function of the enlarged [[ungual]]s of alvarezsauroid and therizinosaur theropods is published by Qin ''et al.'' (2023), who interpret their findings as indicative of the evolution of digging adaptions in late-diverging alvarezsauroids, find the unguals of early-branching therizinosaurs to perform well in piercing and pulling, and interpret the enlarged unguals of ''[[Therizinosaurus]]'' as not adapted to functions that required considerable stress-bearing.<ref>{{cite journal |last1=Qin |first1=Z. |last2=Liao |first2=C.-C. |last3=Benton |first3=M. J. |last4=Rayfield |first4=E. J. |year=2023 |title=Functional space analyses reveal the function and evolution of the most bizarre theropod manual unguals |journal=Communications Biology |volume=6 |at=181 |doi=10.1038/s42003-023-04552-4 |pmid=36797463 |pmc=9935540 | doi-access = free }}</ref>

Revision as of 01:56, 3 March 2023

List of years in archosaur paleontology
In reptile paleontology
2020
2021
2022
2023
2024
2025
2026
In paleontology
2020
2021
2022
2023
2024
2025
2026
In science
2020
2021
2022
2023
2024
2025
2026
+...

This article records new taxa of every kind of fossil archosaur that are scheduled to be described during 2023, as well as other significant discoveries and events related to the paleontology of archosaurs that will be published in 2023.

Pseudosuchians

New pseudosuchian taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Scolotosuchus[1]

Gen. et sp. nov

Valid

Sennikov

Early Triassic

Lipovskaya Formation

 Russia
( Volgograd Oblast)

A member of the family Rauisuchidae. The type species is S. basileus. Published online in 2023, but the issue date is listed as December 2022.[1]

Turnersuchus[2]

Gen. et sp. nov

Wilberg et al.

Early Jurassic (Pliensbachian)

Charmouth Mudstone Formation

 United Kingdom

An early diverging thalattosuchian.
The type species is T. hingleyae.

General pseudosuchian research

Aetosaur research

  • A study on the humeral histology in specimens of Aetosaurus ferratus from the Kaltental site (Lower Stubensandstein, Germany) is published by Teschner et al. (2023), who interpret the studied specimens as juveniles, and interpret the accumulation of small-sized specimens at Kaltental as possible evidence of gregarious behavior in juveniles of A. ferratus.[3]

Crocodylomorph research

  • Evidence from the osteological correlates of the trigeminal nerve in extant and fossil taxa, interpreted as indicative of an increase in sensory abilities in Early Jurassic crocodylomorphs, preceding their transitions to a semiaquatic habitat, is presented by Lessner et al. (2023).[4]
  • New specimen of Hsisosuchus of uncertain specific assignment, providing new information on the shape and arrangement of the osteoderms in the ventral trunk shield of members of this genus, is described from the Upper Jurassic of Yunnan (China) by Wu et al. (2023).[5]
  • A study on possible effects of climate, body size and diet on the survival of terrestrial notosuchians during the Cretaceous–Paleogene extinction event is published by Aubier et al. (2023), who find evidence of increase in body size during the Late Cretaceous which may be related to the shift from omnivorous to carnivorous diet, but find the studied data insufficient to list definitive reasons for the survival of sebecids into the Cenozoic.[6]
  • Description of new fossil material of itasuchid crocodyliforms from the Upper Cretaceous Bauru Group (Brazil) is published by Pinheiro et al. (2023), who also confirm the monophyly of Itasuchidae with some variation in its content, and find the South American itasuchid species to occupy a crocodyliform morphospace, possibly indicating distinct niche occupations.[7]
  • A study on the neuroanatomy and phylogenetic affinities of Portugalosuchus azenhae is published by Puértolas-Pascual et al. (2023), who recover Portugalosuchus as a member of Gavialoidea most closely related to Thoracosaurus neocesariensis.[8]
  • A collection of isolated gavialoid teeth is reported from the shallow marine deposits of Eocene Turnu Roșu (Romania) by Venczel et al. (2023), who recognize a minimum of five morphotypes.[9]
  • A collection of eighteen isolated neosuchian teeth as well as a single isolated crocodyliform osteoderm are reported from the Berriasian–Valanginian Feliz Deserto Formation (Brazil) by Lacerda et al. (2023), who recognize a minimum of three morphotypes among the teeth.[10]

Non-avian dinosaurs

New dinosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Chucarosaurus[11] Gen. et sp. nov In press Agnolin et al. Late Cretaceous (Cenomanian-Turonian) Huincul Formation  Argentina A colossosaurian titanosaur. The type species is C. diripienda.

Malefica[12]

Gen. et sp. nov

In press

Prieto-Márquez & Wagner

Late Cretaceous (Campanian)

Aguja Formation

 United States
( Texas)

A basally branching hadrosaurid. Genus includes new species M. deckerti. Announced in 2022; the final article version will be published in 2023.

General non-avian dinosaur research

Saurischian research

Theropod research

  • A study on the developmental strategies underlying the evolution of body size of non-avialan theropods is published by D'Emic et al. (2023), who report that changes in the rate and duration of growth contributed nearly equally to the body size changes.[17]
  • A study on the relationship between the body size of theropods, the area of muscles important for their balance and locomotion, and their capacity for agility is published by Henderson (2023), who argues that theropod body plan had an upper size limit based on a minimum acceleration threshold.[18]
  • Peng et al. (2023) describe abundant tracks from the Upper Triassic Tianquan track site (Xujiahe Formation; Ya'an, western Sichuan Basin, China), interpreted as produced by small theropods and representing one of the earliest record of dinosaurs from the eastern Tethys realm.[19]
  • Sharma, Hendrickx & Singh (2023) describe dental material of a non-coelurosaur averostran theropod from the Bathonian Fort Member of the Jaisalmer Formation (India), providing evidence of the presence of at least one taxon of a medium to large-bodied theropod on the Tethyan coast of India during the Middle Jurassic.[20]
  • A collection of seven isolated spinosaurid teeth as well as a single preungual pedal phalanx of an indetermined theropod are reported from the Berriasian–Valanginian Feliz Deserto Formation (Brazil) by Lacerda et al. (2023).[10]
  • Barker et al. (2023) reconstruct the endocasts of the baryonychine spinosaurids Baryonyx walkeri and Ceratosuchops inferodios, finding their morphology to be similar to non-maniraptoriform theropods despite their highly modified skulls.[21]
  • Description of a pathological tooth of Spinosaurus from the Late Cretaceous Ifezouane Formation (Morocco) is published by Smith and Martill (2023), representing the first record of external dental pathology in a spinosaurine spinosaurid.[22]
  • Reconstruction of the musculature of the pectoral girdle and forelimbs in megaraptoran theropods is presented by Aranciaga Rolando et al. (2023).[23]
  • A pathological third metatarsal of Phuwiangvenator, indicating that the bone experienced a greenstick fracture and healed before the animal's death, is described from the Lower Cretaceous Sao Khua Formation (Khon Kaen, Thailand) by Samathi et al. (2023).[24]
  • A study estimating the number of telencephalic neurons in theropod dinosaurs is published by Herculano-Houzel (2023), who argues that Allosaurus and Tyrannosaurus are endotherms with baboon- and monkey-like numbers of neurons;[25] however, this study has been criticized.[26]
  • The study suggesting that carnosaurs like Allosaurus were primarily scavengers that fed on sauropod carcasses, originally published by Pahl and Ruedas (2021)[27] is criticized by Kane et al. (2023)[28] but later defended by Pahl and Ruehdas (2023).[29]
  • Evidence of preservation of elements associated with bone remodeling and redeposition (sulfur, calcium, zinc) in a specimen of Tyrannosaurus rex, interpreted as indicative of preservation of original endogenous chemistry in the studied specimen, is presented by Anné et al. (2023).[30]
  • A study on the formation and function of the enlarged unguals of alvarezsauroid and therizinosaur theropods is published by Qin et al. (2023), who interpret their findings as indicative of the evolution of digging adaptions in late-diverging alvarezsauroids, find the unguals of early-branching therizinosaurs to perform well in piercing and pulling, and interpret the enlarged unguals of Therizinosaurus as not adapted to functions that required considerable stress-bearing.[31]
  • Two ornithomimid pedal phalanges are described from the Late Cretaceous Fox Hills Formation (South Dakota, United States) by Chamberlain, Knoll, and Sertich (2023), representing the first dinosaur skeletal material from the formation.[32]
  • A partial left tibia and articulated proximal tarsals, likely belonging to an indeterminate velociraptorine, are described from the Upper Cretaceous Lo Hueco fossil site (Cuenca, Spain) by Malafaia et al. (2023), who also review the European theropods of the Late Cretaceous.[33]

Sauropodomorph research

  • Lockley et al. (2023) evaluate a number of trackways assigned to basal saurischians, including those belonging to the ichnogenera Otozoum, Pseudotetrasauropus, Evazoum, and Kalosauropus, and examine their implications on the gait of "prosauropods".[34]
  • Description of new eusauropod fossil material from the Middle Jurassic Dongdaqiao Formation (China) is published by Wei et al. (2023), who interpret these findings as showing that gigantic sauropods were more widespread than previously known during the Middle Jurassic.[35]
  • Cervical vertebra representing the first record of a titanosauriform sauropod from the Lower Cretaceous Kanmon Group (Japan) is described by Tatehata, Mukunoki & Tanoue (2023).[36]
  • Dhiman et al. (2023) report the discovery of 92 titanosaur egg clutches from the Upper Cretaceous Lameta Formation (Madhya Pradesh, India), including three types of clutches and assigned to six oospecies, interpret their findings as suggestive of higher diversity of titanosaur taxa from the Lameta Formation than indicated by body fossils, and evaluate the implications of the studied egg clutches for the knowledge of the reproductive biology of titanosaurs.[37]

Ornithischian research

  • A study on the biomechanical properties of the skulls of Heterodontosaurus tucki, Lesothosaurus diagnosticus, Scelidosaurus harrisonii, Hypsilophodon foxii and Psittacosaurus lujiatunensis is published by Button et al. (2023), who interpret their findings as indicative of limited functional convergence among studied taxa, which achieved comparable performance of the feeding apparatus through different adaptations.[38]
  • A study on the evolution of forelimb muscle mechanics and function in ornithischian dinosaurs is published by Dempsey et al. (2023), who interpret their findings as indicating that thyreophorans, ornithopods and ceratopsians evolved quadrupedality through different patterns of rearrangement of forelimb musculature.[39]
  • Review of the fossil record of ornithischian dinosaurs from Southeast Asia and southern China is published by Manitkoon et al. (2023)[40]

Thyreophoran research

  • Galton (2023) describes a right sternal bone of a specimen of Stegosaurus from the Carnegie Quarry at Dinosaur National Monument (Morrison Formation; Utah, United States) and reevaluates three putative sternal bones from Como Bluff (Wyoming, United States) described by Gilmore (1914),[41] arguing that they are neither sternal bones nor fossils of Stegosaurus.[42]
  • Description of nodosaurid osteoderms from the Late Cretaceous Snow Hill Island Formation (Antarctica) is published by Brum et al. (2023), who suggest that osteoderm structure may have helped nodosaurids colonize high-latitude environments more easily.[43]
  • Yoshida, Kobayashi & Norell (2023) report the discovery of fossilized larynx of a specimen of Pinacosaurus grangeri from the Campanian of Ukhaa Tolgod (Mongolia), and interpret its anatomy as indicating that Pinacosaurus might have been capable of vocalization and, like extant birds, might have possessed a non-laryngeal vocal source and used larynx as a sound modifier.[44]

Cerapod research

Birds

New bird taxa

Name Novelty Status Authors Age Type locality Country Notes Images
Anachronornis[49] Gen. et sp. nov. Valid Houde, Dickson & Camarena Thanetian Willwood Formation  United States
( Wyoming)
A basal anseriform of the new family Anachronornithidae. The type species is A. anhimops.

Cratonavis[50]

Gen. et sp. nov

Valid

Li et al.

Early Cretaceous

Jiufotang Formation

 China

A non-ornithothoracine pygostylian. The type species is C. zhui.

Danielsavis[49] Gen. et sp. nov. Valid Houde, Dickson & Camarena Ypresian London Clay Formation  United Kingdom A basal anseriform. The type species is D. nazensis.

Kumimanu fordycei[51]

Sp. nov

Valid

Ksepka et al.

Paleocene (Teurian)

Moeraki Formation

 New Zealand

An early penguin.

Macronectes tinae[52]

Sp. nov

Valid

Tennyson & Salvador

Pliocene (Waipipian)

Tangahoe Formation

 New Zealand

A member of the genus Macronectes.

Papulavis[53]

Gen. et sp. nov

In press

Mourer-Chauviré et al.

Eocene (Ypresian)

 France

A bird classified as cf. Aramidae. The type species is P. annae.

Petradyptes[51]

Gen. et sp. nov

Valid

Ksepka et al.

Paleocene (Teurian)

Moeraki Formation

 New Zealand

An early penguin. The type species is P. stonehousei.

Rhynchaeites litoralis[54]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

 United Kingdom

A member of the family Threskiornithidae.

Tegulavis[53]

Gen. et sp. nov

In press

Mourer-Chauviré et al.

Eocene (Ypresian)

 France

A bird classified as cf. Galliformes. The type species is T. corbalani.

Ypresiglaux[55]

Gen. et sp. et comb. nov

Valid

Mayr & Kitchener

Early Eocene

London Clay

 United Kingdom
 United States
( Virginia)

An owl. The type species is Y. michaeldanielsi; genus also includes "Eostrix" gulottai Mayr (2016). Announced in 2022; the final article version was published in 2023.

Avian research

  • Five specimens of Sapeornis chaoyangensis with different-preserved feathers are reported from the Early Cretaceous Jehol Biota (China) by Zhao et al. (2023), who examine their implications for the taphonomy of soft tissues from the Jehol Biota.[56]
  • A study aiming to determine the diets of members of the family Pengornithidae is published by Miller et al. (2023), who report that Pengornis, Parapengornis and Yuanchuavis show adaptations for vertebrate carnivory.[57]
  • Wang (2023) describes a new specimen of Parabohaiornis martini with a well-preserved skull from the Lower Cretaceous Jiufotang Formation (China), and reports the presence of the plesiomorphic temporal and palatal configurations (similar to those of non-avian dinosaurs) in the skull of Parabohaiornis.[58]
  • Buffetaut (2023) reports the discovery of a plaster cast of the lost femur of Struthio anderssoni from the late Pleistocene deposits of the Upper Cave at Zhoukoudian (China), and transfers the species S. anderssoni to the genus Pachystruthio.[59]
  • A study on the evolutionary history of the elephant birds, based on data from fossil eggshells, is published by Grealy et al. (2023), who interpret their findings as supporting the placement of Mullerornis into a separate family, as well as indicative of the existence of a genetically distinct lineage of Aepyornis in Madagascar's far north, report evidence of divergence within Aepyornis corresponding with the onset of the Quaternary, and tentatively advocate synonymising Vorombe titan with Aepyornis maximus.[60]
  • Figueiredo et al. (2023) report a partial coracoid of the genus Morus from the middle Miocene (Langhian) of the Setúbal Peninsula (Portugal), an instance that represents the first Miocene sulid described from the Iberian Peninsula.[61]

Pterosaurs

New pterosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Balaenognathus[62]

Gen. et sp. nov

In press

Martill et al.

Late Jurassic (late Kimmeridgian to Tithonian)

Torleite Formation

 Germany

A member of the family Ctenochasmatidae. The type species is B. maeuseri.

Huaxiadraco[63]

Gen. et comb. nov

Valid

Pêgas et al.

Early Cretaceous

Jiufotang Formation

 China

A member of the family Tapejaridae. The type species is "Huaxiapterus" corollatuset al. (2006).

Pterosaur research

  • A study on the diversification of pterosaurs during their evolutionary history, aiming to determine the factors that affected pterosaur evolution, is published by Yu, Zhang & Xu (2023).[64]
  • Revision of the pterosaur assemblage from the Kem Kem Group (Morocco) is published by Smith et al. (2023), who provide revised diagnoses for Afrotapejara zouhrii and Alanqa saharica, and report at least three distinct jaw morphotypes which cannot be referred to any previously named species.[65]
  • Description of the pectoral girdle morphology and histology in Hamipterus, providing evidence of both the similarities and differences between the flight apparatus of pterosaurs and birds, is published by Wu et al. (2023).[66]
  • A study on the affinities of "Tupuxuara" deliradamus is published by Cerqueira, Müller & Pinheiro (2023), who interpret this pterosaur as a tapejarine.[67]

Other archosaurs

Other archosaur research

General research

  • Wang, Claessens & Sullivan (2023) establish skeletal features associated with the attachment of uncinate processes to vertebral ribs in extant birds and crocodilians, attempt to determine their distribution in fossil archosaurs, and interpret their findings as indicating that cartilaginous uncinate processes were plesiomorphically present (and likely had a ventilatory function) in dinosaurs, and maybe even in archosaurs in general.[68]

References

  1. ^ a b Sennikov, A. G. (2022). "A New Pseudosuchian from the Early Triassic of Eastern Europe". Paleontological Journal. 56 (11): 1391–1418. doi:10.1134/S0031030122110168. S2CID 256618821.
  2. ^ Wilberg, E. W.; Godoy, P. L.; Griffiths, E. F.; Turner, A. H.; Benson, R. B. J. (2023). "A new early diverging thalattosuchian (Crocodylomorpha) from the Early Jurassic (Pliensbachian) of Dorset, U.K. and implications for the origin and evolution of the group". Journal of Vertebrate Paleontology. e2161909. doi:10.1080/02724634.2022.2161909. S2CID 256149424.
  3. ^ Teschner, E. M.; Konietzko-Meier, D.; Desojo, J. B.; Schoch, R. R.; Klein, N. (2023). "Triassic Nursery? Evidence of gregarious behavior in juvenile pseudosuchian archosaurs as inferred by humeral histology of Aetosaurus ferratus (Norian; southern Germany)". Journal of Vertebrate Paleontology. e2168196. doi:10.1080/02724634.2023.2168196.
  4. ^ Lessner, E. J.; Dollman, K. N.; Clark, J. M.; Xu, X.; Holliday, C. M. (2023). "Ecomorphological patterns in trigeminal canal branching among sauropsids reveal sensory shift in suchians". Journal of Anatomy. doi:10.1111/joa.13826. PMID 36680380. S2CID 256055306.
  5. ^ Wu, L.; Wu, X.-C.; You, H.-L.; Zhang, Y.; Zhao, J.; Yuan, Y.; Zhang, H.; Li, S. (2023). "A new specimen of Hsisosuchus (Mesoeucrocodylia, Crocodyliformes) from the Upper Jurassic of Yunnan, China with implications for the diversity of the ventral trunk shield of osteoderms in the genus". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2023.2170796. S2CID 256564315.
  6. ^ Aubier, P.; Jouve, S.; Schnyder, J.; Cubo, J. (2023). "Phylogenetic structure of the extinction and biotic factors explaining differential survival of terrestrial notosuchians at the Cretaceous–Palaeogene crisis". Palaeontology. 66 (1). e12638. doi:10.1111/pala.12638.
  7. ^ Pinheiro, A. E. P.; Pereira, P. V. L. G. C.; Vasconcellos, F. M.; Brum, A. S.; Souza, L. G.; Costa, F. R.; Castro, L. O. R.; Silva, K. F.; Bandeira, K. L. N. (2023). "New Itasuchidae (Sebecia, Ziphosuchia) remains and the radiation of an elusive Mesoeucrocodylia clade". Historical Biology: An International Journal of Paleobiology: 1–26. doi:10.1080/08912963.2022.2139179. S2CID 255664924.
  8. ^ Puértolas-Pascual, E.; Kuzmin, I. T.; Serrano-Martínez, A.; Mateus, O. (2023). "Neuroanatomy of the crocodylomorph Portugalosuchus azenhae from the Late Cretaceous of Portugal". Journal of Anatomy. doi:10.1111/joa.13836. PMID 36732084. S2CID 256546983.
  9. ^ Venczel, M.; Codrea, M.; Trif, N. (2023). "Eocene gavialoid teeth from southern Transylvania with notes on the diversity of Paleogene crocodilians from Romania" (PDF). North-Western Journal of Zoology. 19 (1).
  10. ^ a b Lacerda, M.B.S.; de Andrade, M.B.; Sales, M.A.F.; Aragão, P.R.L.; Vieira, F.S.; Bittencourt, J.S.; Liparini, A. (2023). "The vertebrate fossil record from the Feliz Deserto Formation (Lower Cretaceous), Sergipe, NE Brazil: paleoecological, taphonomic, and paleobiogeographic implications". Cretaceous Research: 105463. doi:10.1016/j.cretres.2022.105463. ISSN 0195-6671. S2CID 255635144.
  11. ^ Agnolin, Federico L.; Gonzalez Riga, Bernardo J.; Aranciaga Rolando, Alexis M.; Rozadilla, Sebastián; Motta, Matías J.; Chimento, Nicolás R.; Novas, Fernando E. (2023-02-02). "A new gigant titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Northwestern Patagonia, Argentina". Cretaceous Research: 105487. doi:10.1016/j.cretres.2023.105487. ISSN 0195-6671. S2CID 256559829.
  12. ^ Prieto-Márquez, A.; Wagner, J. R. (2022). "A new 'duck-billed' dinosaur (Ornithischia: Hadrosauridae) from the upper Campanian of Texas points to a greater diversity of early hadrosaurid offshoots". Cretaceous Research. 143. 105416. doi:10.1016/j.cretres.2022.105416. S2CID 253470207.
  13. ^ Cullen, T. M.; Longstaffe, F. J.; Wortmann, U. G.; Huang, L.; Evans, D. C. (2023). "Anomalous 13C enrichment in Mesozoic vertebrate enamel reflects environmental conditions in a "vanished world" and not a unique dietary physiology". Paleobiology: 1–15. doi:10.1017/pab.2022.43. S2CID 255919241.
  14. ^ Lazer, Kayla; Stout, Ian; Simpson, Edward; Wizevich, Michael; Keebler, Abigal; Hetrick, Grace (2023). "Preserved membrane on dinosaur eggshell fragments, Upper Jurassic Morrison Formation, eastern Utah". PALAIOS. 38 (1): 43–55. Bibcode:2023Palai..38...43L. doi:10.2110/palo.2022.002. S2CID 256351474.
  15. ^ Yin, Ya-Lei; Xie, Fei; Zhou, Chang-Fu; Pei, Rui (2023-02-20). "Dinosaur teeth from the mid-Cretaceous Sunjiawan Formation of western Liaoning Province, China". Historical Biology :An International Journal of Paleobiology. doi:10.1080/08912963.2023.2179398.
  16. ^ Xing, Lida; Wang, Yongdong; Lockley, Martin G.; Klein, Hendrik; Liu, Chang; Persons, W. Scott (2023-01-02). "The first record of dinosaur track from Hubei Province, Central China". Historical Biology: 1–6. doi:10.1080/08912963.2022.2164494. ISSN 0891-2963. S2CID 255671833.
  17. ^ D'Emic, M. D.; O'Connor, P. M.; Sombathy, R. S.; Cerda, I.; Pascucci, T. R.; Varricchio, D.; Pol, D.; Dave, A.; Coria, R. A.; Curry Rogers, K. A. (2023). "Developmental strategies underlying gigantism and miniaturization in non-avialan theropod dinosaurs". Science. 379 (6634): 811–814. doi:10.1126/science.adc8714. PMID 36821658.
  18. ^ Henderson, D. M. (2023). "Growth constraints set an upper limit to theropod dinosaur body size". The Science of Nature. 110 (1). 4. doi:10.1007/s00114-023-01832-1. PMID 36715746. S2CID 256362332.
  19. ^ Peng, S.; Liu, J.; Benton, M. J.; Jin, X.; Shi, Z. (2023). "The first dinosaurs in China: Dating Late Triassic footprint fossils from the Sichuan Basin". Gondwana Research. 117: 261–273. doi:10.1016/j.gr.2023.02.003. S2CID 256671291.
  20. ^ Sharma, A.; Hendrickx, C.; Singh, S. (2023). "First theropod record from the Marine Bathonian of Jaisalmer Basin, Tethyan Coast of Gondwanan India". Rivista Italiana di Paleontologia e Stratigrafia. 129 (1): 49–64. doi:10.54103/2039-4942/18306. S2CID 256347914.
  21. ^ Barker, C.T.; Naish, D.; Trend, J.; Michels, L.V.; Witmer, L.; Ridgley, R.; Rankin, K.; Clarkin, C.; Schneider, P.; Gostling, N.J. (2023). "Modified skulls but conservative brains? The palaeoneurology and endocranial anatomy of baryonychine dinosaurs (Theropoda: Spinosauridae)". Journal of Anatomy. 00: 1–22. doi:10.1111/joa.13837. PMID 36781174.
  22. ^ Smith, R; Martill, D (2023-02-07). "An unusual dental pathology in a tooth of Spinosaurus (Dinosauria, Theropoda) from the mid-Cretaceous of Morocco". Cretaceous Research. doi:10.1016/j.cretres.2023.105499.
  23. ^ Aranciaga Rolando, A. M.; Novas, F. E.; Calvo, J. O.; Porfiri, J. D.; Dos Santos, D. D.; Lamanna, M. C. (2023). "Reconstruction of the pectoral girdle and forelimb musculature of Megaraptora (Dinosauria: Theropoda)". The Anatomical Record. doi:10.1002/ar.25128. PMID 36647300. S2CID 255939861.
  24. ^ Samathi, Adun; Weluwanarak, Jakkrapat; Duanyai, Punyawee; Kaikaew, Siripat; Suteethorn, Suravech (2023-01-13). "An unusual metatarsal of theropod dinosaur from the lower cretaceous of Thailand: the first detailed study of paleopathology in Megaraptora". Historical Biology: 1–6. doi:10.1080/08912963.2023.2166833. ISSN 0891-2963. S2CID 255902629.
  25. ^ Herculano-Houzel, S. (2023). "Theropod dinosaurs had primate-like numbers of telencephalic neurons". Journal of Comparative Neurology. doi:10.1002/cne.25453. PMID 36603059.
  26. ^ Rodrigo Pérez Ortega (2023-01-10). "Some dinos may have been as brainy as modern primates, controversial study argues". Science.org.
  27. ^ Pahl, Cameron C.; Ruedas, Luis A. (2021). "Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs". Ecological Modelling. 458: 109706. doi:10.1016/j.ecolmodel.2021.109706. ISSN 0304-3800.
  28. ^ Kane, Adam; Healy, Kevin; Ruxton, Graeme D. (2023). "Was Allosaurus really predominantly a scavenger?". Ecological Modelling. 476: 110247. doi:10.1016/j.ecolmodel.2022.110247. ISSN 0304-3800.
  29. ^ Pahl, Cameron C.; Ruedas, Luis A. (2023-03-01). "Allosaurus was predominantly a scavenger". Ecological Modelling. 477: 110261. doi:10.1016/j.ecolmodel.2022.110261. ISSN 0304-3800.
  30. ^ Anné, J.; Canoville, A.; Edwards, N. P.; Schweitzer, M. H.; Zanno, L. E. (2023). "Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of Tyrannosaurus rex". Biology. 12 (2). 264. doi:10.3390/biology12020264. PMC 9953530. PMID 36829540.
  31. ^ Qin, Z.; Liao, C.-C.; Benton, M. J.; Rayfield, E. J. (2023). "Functional space analyses reveal the function and evolution of the most bizarre theropod manual unguals". Communications Biology. 6. 181. doi:10.1038/s42003-023-04552-4. PMC 9935540. PMID 36797463.
  32. ^ Chamberlain, JA; Knoll, K; Sertich, J (2023-02-07). "Non-avian theropod phalanges from the marine Fox Hills Formation (Maastrichtian), western South Dakota, USA". PeerJ. doi:10.7717/peerj.14665/supp-1. PMC 9912944. PMID 36778140.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  33. ^ Malafaia, Elisabete; Escaso, Fernando; Coria, Rodolfo A.; Ortega, Francisco (2023-01-19). "An Eudromaeosaurian Theropod from Lo Hueco (Upper Cretaceous. Central Spain)". Diversity. 15 (2): 141. doi:10.3390/d15020141. ISSN 1424-2818.
  34. ^ Lockley, Martin G.; Lallensack, Jens N.; Sciscio, Lara; Bordy, Emese M. (2023). "The early Mesozoic saurischian trackways Evazoum and Otozoum: implications for 'prosauropod' (basal sauropodomorph) gaits". Historical Biology: An International Journal of Paleobiology: 1–19. doi:10.1080/08912963.2022.2163170. S2CID 256253243.
  35. ^ Wei, Xue-Fang; Wang, Qi-Yu; An, Xian-Yin; Wang, Bao-Di; Zhang, Yu-Jie; Mou, Chuang-Long; Li, Yong; Wang, Dong-Bing; Ma, Waisum; Kundrát, Martin (2023-02-11). "New sauropod remains from the Middle Jurassic Dongdaqiao Formation of Qamdo, eastern Tibet". Palaeoworld. doi:10.1016/j.palwor.2023.02.002.
  36. ^ Tatehata, J.-I.; Mukunoki, T.; Tanoue, K. (2023). "Description of a Titanosauriform (Sauropoda, Dinosauria) Cervical Vertebra from the Lower Cretaceous Kanmon Group, Southwestern Japan". Paleontological Research. 27 (3): 350–358. doi:10.2517/PR220009. S2CID 255441172.
  37. ^ Dhiman, H.; Verma, V.; Singh, L. R.; Miglani, V.; Jha, D. K.; Sanyal, P.; Tandon, S. K.; Prasad, G. V. R. (2023). "New Late Cretaceous titanosaur sauropod dinosaur egg clutches from lower Narmada valley, India: Palaeobiology and taphonomy". PLOS ONE. 18 (1). e0278242. doi:10.1371/journal.pone.0278242. PMC 9848018. PMID 36652404.
  38. ^ Button, D. J.; Porro, L. B.; Lautenschlager, S.; Jones, M. E. H.; Barrett, P. M. (2023). "Multiple pathways to herbivory underpinned deep divergences in ornithischian evolution". Current Biology. 33 (3): 557–565.e7. doi:10.1016/j.cub.2022.12.019. PMID 36603586.
  39. ^ Dempsey, M.; Maidment, S. C. R.; Hedrick, B. P.; Bates, K. T. (2023). "Convergent evolution of quadrupedality in ornithischian dinosaurs was achieved through disparate forelimb muscle mechanics". Proceedings of the Royal Society B: Biological Sciences. 290 (1992). 20222435. doi:10.1098/rspb.2022.2435. PMC 9890092. PMID 36722082. S2CID 256416920.
  40. ^ Manitkoon, S.; Deesri, U.; Warapeang, P.; Nonsrirach, T.; Chanthasit, P. (2023). "Ornithischian dinosaurs in Southeast Asia: a review with palaeobiogeographic implications". Fossil Record. 26 (1): 1–25. doi:10.3897/fr.26.e93456. S2CID 255661505.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  41. ^ Gilmore, C. W. (1914). "Osteology of the armored Dinosauria in the United States National Museum, with special reference to the genus Stegosaurus". Bulletin of the United States National Museum. 89: 1–143. hdl:10088/30429.
  42. ^ Galton, P. M. (2023). "A sternal bone of plated ornithischian dinosaur Stegosaurus (Upper Jurassic, Utah), the first for Stegosauria, and the enigmatic "sternal bones" of Gilmore (1914)". Revue de Paléobiologie, Genève. 42 (1): 129–141. doi:10.5281/zenodo.7446065.
  43. ^ Brum, Arthur S.; Eleutério, Lúcia; Simōes, Tiago; Whitney, Megan; Souza, Geovane; Sayāo, Juliana; Kellner, Alexander (2023-02-20). "Ankylosaurian body armor function and evolution with insights from osteohistology and morphometrics of new specimens from the Late Cretaceous of Antarctica". Paleobiology. doi:10.1017/pab.2023.4.
  44. ^ Yoshida, J.; Kobayashi, Y.; Norell, M. A. (2023). "An ankylosaur larynx provides insights for bird-like vocalization in non-avian dinosaurs". Communications Biology. 6. 152. doi:10.1038/s42003-023-04513-x. PMC 9932143. PMID 36792659.
  45. ^ Maidment, S. C. R.; Chapelle, K. E. J.; Bonsor, J. A.; Button, D.; Barrett, P. M. (2023). "Osteology and relationships of Cumnoria prestwichii (Ornithischia: Ornithopoda) from the Late Jurassic of Oxfordshire, UK". Monographs of the Palaeontographical Society. 176 (664): 1–55. doi:10.1080/02693445.2022.2162669. S2CID 256107302.
  46. ^ García-Cobeña, J.; Cobosa, A.; Verdú, F. J. (2023). "Ornithopod tracks and bones: Paleoecology and an unusual evidence of quadrupedal locomotion in the Lower Cretaceous of eastern Iberia (Teruel, Spain)". Cretaceous Research. 144. 105473. doi:10.1016/j.cretres.2023.105473. S2CID 255679510.
  47. ^ Dyer, A. D.; Powers, M. J.; Currie, P. J. (2023). "Problematic putative pachycephalosaurids: synchrotron μCT imaging shines new light on the anatomy and taxonomic validity of Gravitholus albertae from the Belly River Group (Campanian) of Alberta, Canada". Vertebrate Anatomy Morphology Palaeontology. 10 (1): 65–110. doi:10.18435/vamp29388.
  48. ^ Yang, Y.; Gong, E.; Zhao, C.; Wu, W.; Godefroit, P.; Hu, D. (2023). "Endocranial morphology of Liaoceratops yanzigouensis (Dinosauria: Ceratopsia) from Early Cretaceous Jehol Biota of Liaoning in China". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2180739.
  49. ^ a b Houde, Peter; Dickson, Meig; Camarena, Dakota (2023). "Basal Anseriformes from the Early Paleogene of North America and Europe". Diversity. 7 (2): 233. doi:10.3390/d15020233.
  50. ^ Li, Z; Wang, M.; Stidham, T. A.; Zhou, Z. (2023). "Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies". Nature Ecology & Evolution. 7 (1): 20–31. doi:10.1038/s41559-022-01921-w. PMID 36593291. S2CID 255472056.
  51. ^ a b Ksepka, D. T.; Field, D. J.; Heath, T. A.; Pett, W.; Thomas, D. B.; Giovanardi, S.; Tennyson, A. J. D. (2023). "Largest-known fossil penguin provides insight into the early evolution of sphenisciform body size and flipper anatomy". Journal of Paleontology: 1–20. doi:10.1017/jpa.2022.88. S2CID 256709376.
  52. ^ Tennyson, A.J.D.; Salvador, R.B. (2023). "A New Giant Petrel (Macronectes, Aves: Procellariidae) from the Pliocene of Taranaki, New Zealand". Taxonomy. 3 (1): 57–67. doi:10.3390/taxonomy3010006.
  53. ^ a b Mourer-Chauviré, C.; Bourdon, E.; Duffaud, S.; Le Roux, G.; Laurent, Y. (2023). "New avian remains from the early Eocene of La Borie, southern France". Geobios. doi:10.1016/j.geobios.2022.10.004.
  54. ^ Mayr, G.; Kitchener, A. C. (2023). "Multiple skeletons of Rhynchaeites from the London Clay reveal the osteology of early Eocene ibises (Aves, Threskiornithidae)". PalZ. doi:10.1007/s12542-022-00647-1. S2CID 256163083.
  55. ^ Mayr, G.; Kitchener, A. C. (2022). "Early Eocene fossil illuminates the ancestral (diurnal) ecomorphology of owls and documents a mosaic evolution of the strigiform body plan". Ibis. 165 (1): 231–247. doi:10.1111/ibi.13125. S2CID 251455832.
  56. ^ Zhao, Yan; Tian, Qian; Ren, Guang-Ying; Guo, Ying; Zheng, Xiao-Ting (2023). "Taphonomic analysis of the exceptional preservation of early bird feathers during the early Cretaceous period in Northeast China". Frontiers in Earth Science. 10. Bibcode:2023FrEaS..1020594Z. doi:10.3389/feart.2022.1020594.
  57. ^ Miller, C. V.; Pittman, M.; Wang, X.; Zheng, X.; Bright, J. A. (2023). "Quantitative investigation of pengornithid enantiornithine diet reveals macrocarnivorous ecology evolved in birds by Early Cretaceous". iScience. 106211. doi:10.1016/j.isci.2023.106211.
  58. ^ Wang, M. (2023). "A new specimen of Parabohaiornis martini (Avialae: Enantiornithes) sheds light on early avian skull evolution". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.230217.
  59. ^ Buffetaut, E. (2023). "The Missing Late Pleistocene Ostrich Femur from Zhoukoudian (China): New Information Provided by a Rediscovered Old Cast". Diversity. 15 (2). 265. doi:10.3390/d15020265.
  60. ^ Grealy, A.; Miller, G. H.; Phillips, M. J.; Clarke, S. J.; Fogel, M.; Patalwala, D.; Rigby, P.; Hubbard, A.; Demarchi, B.; Collins, M.; Mackie, M.; Sakalauskaite, J.; Stiller, J.; Clarke, J. A.; Legendre, L. J.; Douglass, K.; Hansford, J.; Haile, J.; Bunce, M. (2023). "Molecular exploration of fossil eggshell uncovers hidden lineage of giant extinct bird". Nature Communications. 14 (1). 914. doi:10.1038/s41467-023-36405-3. PMC 9974994. PMID 36854679.
  61. ^ Figueiredo, Silvério; de Carvalho, Carlos Neto; Cachão, Mário; Fonseca, Alexandre (2023-01-09). "A marine bird (sulidae, Aves) from the Langhian (middle Miocene) of Penedo beach (Setúbal Peninsula—SW Portugal) and its paleoenvironmental context". Journal of Iberian Geology. doi:10.1007/s41513-022-00203-5. ISSN 1886-7995.
  62. ^ Martill, D. M.; Frey, E.; Tischlinger, H.; Mäuser, M.; Rivera-Sylva, H. E.; Vidovic, S. U. (2023). "A new pterodactyloid pterosaur with a unique filter-feeding apparatus from the Late Jurassic of Germany". PalZ. doi:10.1007/s12542-022-00644-4. S2CID 256166586.
  63. ^ Pêgas, R. V.; Zhoi, X.; Jin, X.; Wang, K.; Ma, W. (2023). "A taxonomic revision of the Sinopterus complex (Pterosauria, Tapejaridae) from the Early Cretaceous Jehol Biota, with the new genus Huaxiadraco". PeerJ. 11. e14829. doi:10.7717/peerj.14829. PMC 9922500. PMID 36788812.
  64. ^ Yu, Y.; Zhang, C.; Xu, X. (2023). "Complex macroevolution of pterosaurs". Current Biology. doi:10.1016/j.cub.2023.01.007. PMID 36787747.
  65. ^ Smith, R. E.; Ibrahim, N.; Longrich, N.; Unwin, D. M.; Jacobs, M. L.; Williams, C. J.; Zouhri, S.; Martill, D. M. (2023). "The pterosaurs of the Cretaceous Kem Kem Group of Morocco". PalZ. doi:10.1007/s12542-022-00642-6. S2CID 256608633.
  66. ^ Wu, Q.; Chen, H.; Li, Z.; Jiang, S.; Wang, X.; Zhou, Z. (2023). "The morphology and histology of the pectoral girdle of Hamipterus (Pterosauria), from the Early Cretaceous of Northwest China". The Anatomical Record. doi:10.1002/ar.25167. PMID 36787121.
  67. ^ Cerqueira, G. M.; Müller, R. T.; Pinheiro, F. L. (2023). "On the phylogenetic affinities of the tapejarid pterosaur 'Tupuxuara deliradamus' from the Lower Cretaceous of Brazil". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2180741.
  68. ^ Wang, Y.; Claessens, L. P. A. M.; Sullivan, C. (2023). "Deep reptilian evolutionary roots of a major avian respiratory adaptation". Communications Biology. 6 (1). 3. doi:10.1038/s42003-022-04301-z. PMC 9845227. PMID 36650231.