RIPK1: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
I added some information to the introduction.
I added some references
Line 1: Line 1:
{{Infobox_gene}}
{{Infobox_gene}}
'''Receptor-interacting serine/threonine-protein kinase 1 (RIPK1)''' is an [[enzyme]] that in humans is encoded by the ''RIPK1'' [[gene]], which is located on chromosome 6.<ref name="pmid7538908">{{cite journal |vauthors=Stanger BZ, Leder P, Lee TH, Kim E, Seed B | title = RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death | journal = Cell | volume = 81 | issue = 4 | pages = 513–23 |date=June 1995 | pmid = 7538908 | pmc = | doi =10.1016/0092-8674(95)90072-1 }}</ref><ref name="pmid8612133">{{cite journal |vauthors=Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV | title = TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex | journal = Immunity | volume = 4 | issue = 4 | pages = 387–96 |date=June 1996 | pmid = 8612133 | pmc = | doi =10.1016/S1074-7613(00)80252-6 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8737| accessdate = }}</ref> This protein belongs to the Receptor Interacting Protein (RIP) kinases family, which consists of 7 members, being RIPK1 the first member of the family.
'''Receptor-interacting serine/threonine-protein kinase 1 (RIPK1)''' is an [[enzyme]] that in humans is encoded by the ''RIPK1'' [[gene]], which is located on chromosome 6.<ref name="pmid7538908">{{cite journal |vauthors=Stanger BZ, Leder P, Lee TH, Kim E, Seed B | title = RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death | journal = Cell | volume = 81 | issue = 4 | pages = 513–23 |date=June 1995 | pmid = 7538908 | pmc = | doi =10.1016/0092-8674(95)90072-1 }}</ref><ref name="pmid8612133">{{cite journal |vauthors=Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV | title = TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex | journal = Immunity | volume = 4 | issue = 4 | pages = 387–96 |date=June 1996 | pmid = 8612133 | pmc = | doi =10.1016/S1074-7613(00)80252-6 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8737| accessdate = }}</ref> This protein belongs to the Receptor Interacting Protein (RIP) kinases family, which consists of 7 members, being RIPK1 the first member of the family.<ref>{{cite journal |vauthors=Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P | title = RIP1, a kinase on the crossroads of a cell's decision to live or die | journal = Cell Death Differ. | volume = 14 | issue = 3 | pages = 400–10 |date=March 2007 | pmid = 17301840 | doi = 10.1038/sj.cdd.4402085 }}</ref>


RIPK1 is known to have function in a variety of cellular pathways related to both cell survival and death. In terms of [[cell death]], RIPK1 plays a role in [[apoptosis]] and [[necroptosis]]. Some of the cell survival pathways RIPK1 participates in include [[NF-κB]], Akt, and JNK.
RIPK1 is known to have function in a variety of cellular pathways related to both cell survival and death. In terms of [[cell death]], RIPK1 plays a role in [[apoptosis]] and [[necroptosis]]. Some of the cell survival pathways RIPK1 participates in include [[NF-κB]], Akt, and JNK. <ref>{{cite journal |vauthors=Lin Y | title = RIP1, a kinase on the crossroads of a cell's decision to live or die. ''RIP1-Mediated Signaling Pathways in Cell Survival and Death Control.'' In: Shen HM., Vandenabeele P. (eds) Necrotic Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY |date=Jan 1, 2014 | doi = 10.1007/978-1-4614-8220-8_2 }}</ref>




Line 16: Line 16:
Complex-I is then modified by the IAPs (Inhibitor of Apoptosis Proteins) and the LUBAC (Linear Ubiquitination Assembly Complex), which generate linear ubiquitin linkages. The ubiquitination of complex-I leads to the activation of NF-kB, which in turn activates the expression of FLICE-like inhibitory protein FLIP. FLIP then binds to [[Caspase 8|caspase-8]], forming a caspase-8 FLIP heterodimer in the cytosol that disrupts the activity of caspase-8 and prevents caspase-8 mediated [[apoptosis]] from taking place.
Complex-I is then modified by the IAPs (Inhibitor of Apoptosis Proteins) and the LUBAC (Linear Ubiquitination Assembly Complex), which generate linear ubiquitin linkages. The ubiquitination of complex-I leads to the activation of NF-kB, which in turn activates the expression of FLICE-like inhibitory protein FLIP. FLIP then binds to [[Caspase 8|caspase-8]], forming a caspase-8 FLIP heterodimer in the cytosol that disrupts the activity of caspase-8 and prevents caspase-8 mediated [[apoptosis]] from taking place.


The assembly of complex II then starts in the cytosol. This new complex contains the caspase-8 FLIP heterodimer as well as RIPK1 and RIPK3. Caspase inhibition within this complex allows RIPK1 and [[RIPK3]] to autotransphosphorylate each other, forming another complex called necrosome. The necrosome starts recruiting MLKL (Mixed Kinase Domain Like protein), which is phosphorylated by RIPK3 and immediately translocates to [[Lipid raft|lipid rafts]] inside the plasma membrane. This leads to the formation of pores in the membrane, allowing the sodium influx to increase- and consequently the [[osmotic pressure]]-, which eventually causes cell membrane rupture.
The assembly of complex II then starts in the cytosol. This new complex contains the caspase-8 FLIP heterodimer as well as RIPK1 and RIPK3. Caspase inhibition within this complex allows RIPK1 and [[RIPK3]] to autotransphosphorylate each other, forming another complex called necrosome. The necrosome starts recruiting MLKL (Mixed Kinase Domain Like protein), which is phosphorylated by RIPK3 and immediately translocates to [[Lipid raft|lipid rafts]] inside the plasma membrane. This leads to the formation of pores in the membrane, allowing the sodium influx to increase -and consequently the [[osmotic pressure]]-, which eventually causes cell membrane rupture.


== Interactions ==
== Interactions ==
Line 42: Line 42:
==Further reading==
==Further reading==
{{refbegin |35em}}
{{refbegin |35em}}
* {{cite journal |vauthors=Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P | title = RIP1, a kinase on the crossroads of a cell's decision to live or die | journal = Cell Death Differ. | volume = 14 | issue = 3 | pages = 400–10 |date=March 2007 | pmid = 17301840 | doi = 10.1038/sj.cdd.4402085 }}
* {{cite journal |vauthors=Duan H, Dixit VM | title = RAIDD is a new 'death' adaptor molecule | journal = Nature | volume = 385 | issue = 6611 | pages = 86–9 |date=January 1997 | pmid = 8985253 | doi = 10.1038/385086a0 }}
* {{cite journal |vauthors=Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L | title = Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway | journal = Immunity | volume = 7 | issue = 6 | pages = 821–30 |date=December 1997 | pmid = 9430227 | doi = 10.1016/S1074-7613(00)80400-8 }}
* {{cite journal |vauthors=Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L | title = Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway | journal = Immunity | volume = 7 | issue = 6 | pages = 821–30 |date=December 1997 | pmid = 9430227 | doi = 10.1016/S1074-7613(00)80400-8 }}
* {{cite journal |vauthors=Juo P, Kuo CJ, Yuan J, Blenis J | title = Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade | journal = Curr. Biol. | volume = 8 | issue = 18 | pages = 1001–8 |date=September 1998 | pmid = 9740801 | doi = 10.1016/S0960-9822(07)00420-4 }}
* {{cite journal |vauthors=Juo P, Kuo CJ, Yuan J, Blenis J | title = Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade | journal = Curr. Biol. | volume = 8 | issue = 18 | pages = 1001–8 |date=September 1998 | pmid = 9740801 | doi = 10.1016/S0960-9822(07)00420-4 }}

Revision as of 20:56, 20 October 2017

RIPK1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesRIPK1, RIP, RIP1, RIP-1, receptor interacting serine/threonine kinase 1, IMD57, AIEFL
External IDsOMIM: 603453; MGI: 108212; HomoloGene: 2820; GeneCards: RIPK1; OMA:RIPK1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_009068
NM_001359997

RefSeq (protein)

NP_033094
NP_001346926

Location (UCSC)Chr 6: 3.06 – 3.12 MbChr 13: 34.19 – 34.22 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an enzyme that in humans is encoded by the RIPK1 gene, which is located on chromosome 6.[5][6][7] This protein belongs to the Receptor Interacting Protein (RIP) kinases family, which consists of 7 members, being RIPK1 the first member of the family.[8]

RIPK1 is known to have function in a variety of cellular pathways related to both cell survival and death. In terms of cell death, RIPK1 plays a role in apoptosis and necroptosis. Some of the cell survival pathways RIPK1 participates in include NF-κB, Akt, and JNK. [9]


Function

Although, RIPK1 has been primarily studied in the context of TNFR signaling, RIPk1 is also activated in response to diverse stimuli.[10]

The kinase domain, while important for necroptotic (programmed necrotic) functions, it appears dispensable for pro-survival roles. Kinase activity of RIPK1 is also required for RIPK1-dependent apoptosis in conditions of IAP1/2 depletion, TAK1inhibition/depletion, RIPK3 depletion or MLKL depletion.[11][12] Also, proteolytic processing of RIPk1, through both caspase-dependent and -independent mechanisms, triggers lethality that is dependent on the generation of one or more specific C-terminal cleavage product(s) of RIPk1 upon stress.

Role of RIPK1 in necroptosis

Necroptosis is a programmed form of necrosis which starts with the assembly of the TNF (tumor necrosis factor) ligando to its membrane receptor, the TNFR (tumor necrosis factor receptor). Once activated, the intracellular domain of TNFR starts the recruitment of the adaptor TNFR-1-associated death domain protein TRADD, which then recruits RIPK1 and two ubiquitin ligases,TRAF2 and clAP1. This complex is called the TNFR-1 complex I.

Complex-I is then modified by the IAPs (Inhibitor of Apoptosis Proteins) and the LUBAC (Linear Ubiquitination Assembly Complex), which generate linear ubiquitin linkages. The ubiquitination of complex-I leads to the activation of NF-kB, which in turn activates the expression of FLICE-like inhibitory protein FLIP. FLIP then binds to caspase-8, forming a caspase-8 FLIP heterodimer in the cytosol that disrupts the activity of caspase-8 and prevents caspase-8 mediated apoptosis from taking place.

The assembly of complex II then starts in the cytosol. This new complex contains the caspase-8 FLIP heterodimer as well as RIPK1 and RIPK3. Caspase inhibition within this complex allows RIPK1 and RIPK3 to autotransphosphorylate each other, forming another complex called necrosome. The necrosome starts recruiting MLKL (Mixed Kinase Domain Like protein), which is phosphorylated by RIPK3 and immediately translocates to lipid rafts inside the plasma membrane. This leads to the formation of pores in the membrane, allowing the sodium influx to increase -and consequently the osmotic pressure-, which eventually causes cell membrane rupture.

Interactions

RIPK1 has been shown to interact with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000137275Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000021408Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Stanger BZ, Leder P, Lee TH, Kim E, Seed B (June 1995). "RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death". Cell. 81 (4): 513–23. doi:10.1016/0092-8674(95)90072-1. PMID 7538908.
  6. ^ a b c d Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (June 1996). "TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex". Immunity. 4 (4): 387–96. doi:10.1016/S1074-7613(00)80252-6. PMID 8612133.
  7. ^ "Entrez Gene: RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1".
  8. ^ Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (March 2007). "RIP1, a kinase on the crossroads of a cell's decision to live or die". Cell Death Differ. 14 (3): 400–10. doi:10.1038/sj.cdd.4402085. PMID 17301840.
  9. ^ Lin Y (Jan 1, 2014). "RIP1, a kinase on the crossroads of a cell's decision to live or die. RIP1-Mediated Signaling Pathways in Cell Survival and Death Control. In: Shen HM., Vandenabeele P. (eds) Necrotic Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY". doi:10.1007/978-1-4614-8220-8_2. {{cite journal}}: Cite journal requires |journal= (help)
  10. ^ Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2012). "Many stimuli pull the necrotic trigger, an overview". Cell Death and Differentiation. 19 (1): 75–86. doi:10.1038/cdd.2011.164. PMC 3252835. PMID 22075985.
  11. ^ Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, Vandenabeele P, Bertrand MJ (2013). "RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition". Cell Death and Differentiation. 20 (10): 1381–92. doi:10.1038/cdd.2013.94. PMC 3770330. PMID 23892367.
  12. ^ Remijsen Q, Goossens V, Grootjans S, Van den Haute C, Vanlangenakker N, Dondelinger Y, Roelandt R, Bruggeman I, Goncalves A, Bertrand MJ, Baekelandt V, Takahashi N, Berghe TV, Vandenabeele P (2014). "Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis". Cell Death & Disease. 5: e1004. doi:10.1038/cddis.2013.531. PMC 4040672. PMID 24434512.
  13. ^ a b c d Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (June 2008). "cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination". Mol. Cell. 30 (6): 689–700. doi:10.1016/j.molcel.2008.05.014. PMID 18570872.
  14. ^ a b Liao W, Xiao Q, Tchikov V, Fujita K, Yang W, Wincovitch S, Garfield S, Conze D, El-Deiry WS, Schütze S, Srinivasula SM (May 2008). "CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation". Curr. Biol. 18 (9): 641–9. doi:10.1016/j.cub.2008.04.017. PMC 2587165. PMID 18450452.
  15. ^ a b Chaudhary PM, Eby MT, Jasmin A, Kumar A, Liu L, Hood L (September 2000). "Activation of the NF-kappaB pathway by caspase 8 and its homologs". Oncogene. 19 (39): 4451–60. doi:10.1038/sj.onc.1203812. PMID 11002417.
  16. ^ Oshima S, Turer EE, Callahan JA, Chai S, Advincula R, Barrera J, Shifrin N, Lee B, Benedict Yen TS, Yen B, Woo T, Malynn BA, Ma A (February 2009). "ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development". Nature. 457 (7231): 906–9. doi:10.1038/nature07575. PMC 2642523. PMID 19060883.
  17. ^ Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J (June 2000). "The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways". Curr. Biol. 10 (11): 640–8. doi:10.1016/S0960-9822(00)00512-1. PMID 10837247.
  18. ^ a b Duan H, Dixit VM (January 1997). "RAIDD is a new 'death' adaptor molecule". Nature. 385 (6611): 86–9. doi:10.1038/385086a0. PMID 8985253.
  19. ^ Ahmad M, Srinivasula SM, Wang L, Talanian RV, Litwack G, Fernandes-Alnemri T, Alnemri ES (February 1997). "CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP". Cancer Res. 57 (4): 615–9. PMID 9044836.
  20. ^ Yu PW, Huang BC, Shen M, Quast J, Chan E, Xu X, Nolan GP, Payan DG, Luo Y (May 1999). "Identification of RIP3, a RIP-like kinase that activates apoptosis and NFkappaB". Curr. Biol. 9 (10): 539–42. doi:10.1016/S0960-9822(99)80239-5. PMID 10339433.
  21. ^ Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H (July 2012). "The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis". Cell. 150 (2): 339–50. doi:10.1016/j.cell.2012.06.019. PMC 3664196. PMID 22817896.
  22. ^ Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW (March 2009). "The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling". EMBO J. 28 (5): 513–22. doi:10.1038/emboj.2008.285. PMC 2657574. PMID 19131965.
  23. ^ Chen D, Li X, Zhai Z, Shu HB (May 2002). "A novel zinc finger protein interacts with receptor-interacting protein (RIP) and inhibits tumor necrosis factor (TNF)- and IL1-induced NF-kappa B activation". J. Biol. Chem. 277 (18): 15985–91. doi:10.1074/jbc.M108675200. PMID 11854271.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J (June 1999). "The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation". EMBO J. 18 (11): 3044–53. doi:10.1093/emboj/18.11.3044. PMC 1171386. PMID 10356400.
  25. ^ Kim JW, Choi EJ, Joe CO (September 2000). "Activation of death-inducing signaling complex (DISC) by pro-apoptotic C-terminal fragment of RIP". Oncogene. 19 (39): 4491–9. doi:10.1038/sj.onc.1203796. PMID 11002422.
  26. ^ Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, Izrael-Tomasevic A, Phu L, Arnott D, Aghajan M, Zobel K, Bazan JF, Fairbrother WJ, Deshayes K, Vucic D (January 2009). "Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1)". Biochem. J. 417 (1): 149–60. doi:10.1042/BJ20081885. PMID 18939944.
  27. ^ a b Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM (August 2008). "Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies". Cell. 134 (4): 668–78. doi:10.1016/j.cell.2008.07.039. PMID 18724939.
  28. ^ a b Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D (September 2008). "c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation". J. Biol. Chem. 283 (36): 24295–9. doi:10.1074/jbc.C800128200. PMC 3259840. PMID 18621737.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. ^ Takeuchi M, Rothe M, Goeddel DV (August 1996). "Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins". J. Biol. Chem. 271 (33): 19935–42. doi:10.1074/jbc.271.33.19935. PMID 8702708.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  30. ^ Tada K, Okazaki T, Sakon S, Kobarai T, Kurosawa K, Yamaoka S, Hashimoto H, Mak TW, Yagita H, Okumura K, Yeh WC, Nakano H (September 2001). "Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death". J. Biol. Chem. 276 (39): 36530–4. doi:10.1074/jbc.M104837200. PMID 11479302.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  31. ^ Malinin NL, Boldin MP, Kovalenko AV, Wallach D (February 1997). "MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1". Nature. 385 (6616): 540–4. doi:10.1038/385540a0. PMID 9020361.
  32. ^ Ma Q, Zhou L, Shi H, Huo K (June 2008). "NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation". Cell. Signal. 20 (6): 1044–51. doi:10.1016/j.cellsig.2008.01.015. PMID 18299187.

Further reading