Hydrogen ditelluride: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Properties: 90 Hz split
→‎Properties: the Z boson role
Line 21: Line 21:
Apart from its speculative detection in electrolysis, ditellane has been detected in the gas phase produced from di-''sec''-butylditellane.<ref name=mac>{{cite book|last1=Macintyre|first1=Jane E.|title=Dictionary of Inorganic Compounds, Supplement 3|date=1995|publisher=CRC Press|isbn=9780412491108|page=287|url=https://books.google.com.au/books?id=YY2N7nOhBoIC&pg=PA287|language=en}}</ref><ref>{{cite journal|last1=Hop|first1=Cornelis E. C. A.|last2=Medina|first2=Marco A.|title=H2Te2 Is Stable in the Gas Phase|journal=Journal of the American Chemical Society|date=April 1994|volume=116|issue=7|pages=3163–3164|doi=10.1021/ja00086a072}}</ref>
Apart from its speculative detection in electrolysis, ditellane has been detected in the gas phase produced from di-''sec''-butylditellane.<ref name=mac>{{cite book|last1=Macintyre|first1=Jane E.|title=Dictionary of Inorganic Compounds, Supplement 3|date=1995|publisher=CRC Press|isbn=9780412491108|page=287|url=https://books.google.com.au/books?id=YY2N7nOhBoIC&pg=PA287|language=en}}</ref><ref>{{cite journal|last1=Hop|first1=Cornelis E. C. A.|last2=Medina|first2=Marco A.|title=H2Te2 Is Stable in the Gas Phase|journal=Journal of the American Chemical Society|date=April 1994|volume=116|issue=7|pages=3163–3164|doi=10.1021/ja00086a072}}</ref>
==Properties==
==Properties==
Hydrogen ditelluride has been investigated theoretically, with various properties predicted. The molecule is twisted with a [[C2 symmetry|''C''<sub>2</sub> symmetry]]. There are two [[enantiomer]]s. Hydrogen ditelluride is equal simplest in its unsymmetrical molecule, any simpler molecule will not have the required low symmetry. The equilibrium geometry (not counting zero point energy or vibrational energy) has the molecule with 2.879&nbsp;Å between the tellurium atoms, and 1.678&nbsp;Å between hydrogen and tellurium. The H-Te-Te angle is 94.93°. The angle of lowest energy between the two H-Te bonds (dihedral angle) is 89.32°. The ''trans'' cofiguration is higher in energy (3.71 kcal/mol), and the ''cis'' would be even higher (4.69 kcal/mol).<ref>{{cite journal|last1=BelBruno|first1=Joseph J.|title=Ab Initio Calculations of the Rotational Barriers in H<sub>2</sub>Te<sub>2</sub> and (CH<sub>3</sub>)<sub>2</sub>Te<sub>2</sub>|journal=Heteroatom Chemistry|date=1997|volume=8|issue=3|pages=199–202|doi=10.1002/(SICI)1098-1071(1997)8:3<199::AID-HC1>3.0.CO;2-8}}</ref> However the molecule is predicted show evidence of [[parity violation]], however this may get interference from [[stereomutation tunneling]], where the P enantiomer and M enantiomer spontaneously convert into each other by quantum tunneling. The parity violation effect is proportional to the cube of the atomic number, so is stronger in tellurium molecules than others higher up in the periodic table. Because of parity violation, the energy of the two enantiomers differs, and is likely to be higher in this molecule than most others. So an effort is underway to observe this so-far undetected effect. The tunneling effect is reduced by higher masses, so that the deuterium form, D<sub>2</sub>Te<sub>2</sub> will show less tunneling. In a tortional vibrational mode the molecule can twist back and forward storing energy. Seven different quantum vibration levels are predicted below the energy to jump to the other enantiomer. The levels are numbered ''v''<sub>t</sub>=0 up to 6. The sixth level is predicted to be split into two energy levels because of quantum tunneling.<ref name=gott>{{cite journal|last1=Gottselig|first1=Michael|last2=Quack|first2=Martin|last3=Stohner|first3=Jürgen|last4=Willeke|first4=Martin|title=Mode-selective stereomutation tunneling and parity violation in HOClH+ and H2Te2 isotopomers|journal=International Journal of Mass Spectrometry|date=April 2004|volume=233|issue=1-3|pages=373–384|doi=10.1016/j.ijms.2004.01.014}}</ref> The parity violation energy is calculated as 3×10<sup>−9</sup>&nbsp;cm<sup>−1</sup> or 90 Hz.<ref name=gott/>
Hydrogen ditelluride has been investigated theoretically, with various properties predicted. The molecule is twisted with a [[C2 symmetry|''C''<sub>2</sub> symmetry]]. There are two [[enantiomer]]s. Hydrogen ditelluride is equal simplest in its unsymmetrical molecule, any simpler molecule will not have the required low symmetry. The equilibrium geometry (not counting zero point energy or vibrational energy) has the molecule with 2.879&nbsp;Å between the tellurium atoms, and 1.678&nbsp;Å between hydrogen and tellurium. The H-Te-Te angle is 94.93°. The angle of lowest energy between the two H-Te bonds (dihedral angle) is 89.32°. The ''trans'' cofiguration is higher in energy (3.71 kcal/mol), and the ''cis'' would be even higher (4.69 kcal/mol).<ref>{{cite journal|last1=BelBruno|first1=Joseph J.|title=Ab Initio Calculations of the Rotational Barriers in H<sub>2</sub>Te<sub>2</sub> and (CH<sub>3</sub>)<sub>2</sub>Te<sub>2</sub>|journal=Heteroatom Chemistry|date=1997|volume=8|issue=3|pages=199–202|doi=10.1002/(SICI)1098-1071(1997)8:3<199::AID-HC1>3.0.CO;2-8}}</ref>
Being chiral the molecule is predicted show evidence of [[parity violation]], however this may get interference from [[stereomutation tunneling]], where the P enantiomer and M enantiomer spontaneously convert into each other by quantum tunneling. The parity violation effect on energy comes about from virual [[Z boson]] exchanges between the nucleus and electrons.<ref>{{cite book|last1=Senami|first1=Masato|last2=Inada|first2=Ken|last3=Soga|first3=Kota|last4=Fukuda|first4=Masahiro|last5=Tachibana|first5=Akitomo|title=Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics|date=2018|publisher=Springer, Cham|isbn=9783319745817|pages=95–106|url=https://link.springer.com/chapter/10.1007/978-3-319-74582-4_6|language=en|chapter=Difference of Chirality of the Electron Between Enantiomers of H$$_$$X$$_$$}}</ref> It is proportional to the cube of the atomic number, so is stronger in tellurium molecules than others higher up in the periodic table (eg O, S, Se). Because of parity violation, the energy of the two enantiomers differs, and is likely to be higher in this molecule than most moleculess. So an effort is underway to observe this so-far undetected effect. The tunneling effect is reduced by higher masses, so that the deuterium form, D<sub>2</sub>Te<sub>2</sub> will show less tunneling. In a tortional vibrational mode the molecule can twist back and forward storing energy. Seven different quantum vibration levels are predicted below the energy to jump to the other enantiomer. The levels are numbered ''v''<sub>t</sub>=0 up to 6. The sixth level is predicted to be split into two energy levels because of quantum tunneling.<ref name=gott>{{cite journal|last1=Gottselig|first1=Michael|last2=Quack|first2=Martin|last3=Stohner|first3=Jürgen|last4=Willeke|first4=Martin|title=Mode-selective stereomutation tunneling and parity violation in HOClH+ and H2Te2 isotopomers|journal=International Journal of Mass Spectrometry|date=April 2004|volume=233|issue=1-3|pages=373–384|doi=10.1016/j.ijms.2004.01.014}}</ref> The parity violation energy is calculated as 3×10<sup>−9</sup>&nbsp;cm<sup>−1</sup> or 90 Hz.<ref name=gott/>


The different vibrational modes for H<sub>2</sub>Te are symmetrical stretch of H-Te, symmetrical bend of ∠H-Te-Te, torsion, stretch Te-Te, asymmetrical stretch H-Te, asymmetrical bend of ∠H-Te-Te.<ref name=gott/> The time to tunnel between enantiomers is only 0.6&nbsp;ms for H<sub>2</sub>Te<sub>2</sub>, but is 66000 seconds for T<sub>2</sub>Te<sub>2</sub>.<ref name=gott/>
The different vibrational modes for H<sub>2</sub>Te are symmetrical stretch of H-Te, symmetrical bend of ∠H-Te-Te, torsion, stretch Te-Te, asymmetrical stretch H-Te, asymmetrical bend of ∠H-Te-Te.<ref name=gott/> The time to tunnel between enantiomers is only 0.6&nbsp;ms for H<sub>2</sub>Te<sub>2</sub>, but is 66000 seconds for T<sub>2</sub>Te<sub>2</sub>.<ref name=gott/>

Revision as of 11:20, 23 May 2018

Hydrogen ditelluride
Names
Other names
ditellane
Dihydrogen ditellanide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
239518
  • InChI=1S/H2Te2/c1-2/h1-2H
    Key: JVCDLODDVKFSTM-UHFFFAOYSA-N
  • [TeH][TeH]
Properties
H2Te2
Molar mass 257.22 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Hydrogen ditelluride or ditellane is an unstable hydrogen dichalcogenide containing two tellurium atoms per molecule, with structure HTeTeH. It can possibly be formed at the tellurium cathode in electrolysis in acid.[2] When electrolysed in alkaline solutions, a tellurium cathode produces ditelluride Te22− ions, as well as Te2− and a red polytelluride. The greatest amount of ditelluride is made when pH is over 12.[3]

Production

Apart from its speculative detection in electrolysis, ditellane has been detected in the gas phase produced from di-sec-butylditellane.[1][4]

Properties

Hydrogen ditelluride has been investigated theoretically, with various properties predicted. The molecule is twisted with a C2 symmetry. There are two enantiomers. Hydrogen ditelluride is equal simplest in its unsymmetrical molecule, any simpler molecule will not have the required low symmetry. The equilibrium geometry (not counting zero point energy or vibrational energy) has the molecule with 2.879 Å between the tellurium atoms, and 1.678 Å between hydrogen and tellurium. The H-Te-Te angle is 94.93°. The angle of lowest energy between the two H-Te bonds (dihedral angle) is 89.32°. The trans cofiguration is higher in energy (3.71 kcal/mol), and the cis would be even higher (4.69 kcal/mol).[5]

Being chiral the molecule is predicted show evidence of parity violation, however this may get interference from stereomutation tunneling, where the P enantiomer and M enantiomer spontaneously convert into each other by quantum tunneling. The parity violation effect on energy comes about from virual Z boson exchanges between the nucleus and electrons.[6] It is proportional to the cube of the atomic number, so is stronger in tellurium molecules than others higher up in the periodic table (eg O, S, Se). Because of parity violation, the energy of the two enantiomers differs, and is likely to be higher in this molecule than most moleculess. So an effort is underway to observe this so-far undetected effect. The tunneling effect is reduced by higher masses, so that the deuterium form, D2Te2 will show less tunneling. In a tortional vibrational mode the molecule can twist back and forward storing energy. Seven different quantum vibration levels are predicted below the energy to jump to the other enantiomer. The levels are numbered vt=0 up to 6. The sixth level is predicted to be split into two energy levels because of quantum tunneling.[7] The parity violation energy is calculated as 3×10−9 cm−1 or 90 Hz.[7]

The different vibrational modes for H2Te are symmetrical stretch of H-Te, symmetrical bend of ∠H-Te-Te, torsion, stretch Te-Te, asymmetrical stretch H-Te, asymmetrical bend of ∠H-Te-Te.[7] The time to tunnel between enantiomers is only 0.6 ms for H2Te2, but is 66000 seconds for T2Te2.[7]

Related

There are organic derivatives, in which the hydrogen is replaced by organic groups. One example is bis-(2,4,6-tributylphenyl)ditellane.[8] Others are diphenylditellane and 1,2-bis(cyclohexylmethyl)ditellane.

References

  1. ^ a b Macintyre, Jane E. (1995). Dictionary of Inorganic Compounds, Supplement 3. CRC Press. p. 287. ISBN 9780412491108.
  2. ^ Awad, S. A. (May 1962). "POISONING EFFECT OF TELLURIDE IONS ON HYDROGEN EVOLUTION AND CATHODIC FORMATION OF HYDROGEN DITELLURIDE". The Journal of Physical Chemistry. 66 (5): 890–894. doi:10.1021/j100811a031.
  3. ^ Alekperov, A I (30 April 1974). "Electrochemistry of Selenium and Tellurium". Russian Chemical Reviews. 43 (4): 235–250. doi:10.1070/RC1974v043n04ABEH001803.
  4. ^ Hop, Cornelis E. C. A.; Medina, Marco A. (April 1994). "H2Te2 Is Stable in the Gas Phase". Journal of the American Chemical Society. 116 (7): 3163–3164. doi:10.1021/ja00086a072.
  5. ^ BelBruno, Joseph J. (1997). "Ab Initio Calculations of the Rotational Barriers in H2Te2 and (CH3)2Te2". Heteroatom Chemistry. 8 (3): 199–202. doi:10.1002/(SICI)1098-1071(1997)8:3<199::AID-HC1>3.0.CO;2-8.
  6. ^ Senami, Masato; Inada, Ken; Soga, Kota; Fukuda, Masahiro; Tachibana, Akitomo (2018). "Difference of Chirality of the Electron Between Enantiomers of H$$_$$X$$_$$". Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Springer, Cham. pp. 95–106. ISBN 9783319745817.
  7. ^ a b c d Gottselig, Michael; Quack, Martin; Stohner, Jürgen; Willeke, Martin (April 2004). "Mode-selective stereomutation tunneling and parity violation in HOClH+ and H2Te2 isotopomers". International Journal of Mass Spectrometry. 233 (1–3): 373–384. doi:10.1016/j.ijms.2004.01.014.
  8. ^ Lickiss, P. D. (1988). "Chapter 9. Organometallic chemistry. Part (ii) Main-group elements". Annual Reports Section "B" (Organic Chemistry). 85: 263. doi:10.1039/OC9888500241.