From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about the physics experiment. For other uses, see Dama (disambiguation).

The DAMA/LIBRA experiment[1] is a particle detector experiment designed to detect dark matter using the direct detection approach, by using a scintilation detector to search for Weakly Interacting Massive Particles (WIMPs) in the galactic halo. The experiment aims to find an annual variation of the number of detection events, caused by the variation of the velocity of the detector relative to the dark matter halo as the Earth orbits the Sun. It is located at the Laboratori Nazionali del Gran Sasso in Italy.

The detector is made of 25 highly radiopure scintillating thallium-doped sodium iodide (NaI(Tl)) crystals placed in a 5 by 5 matrix. Each crystal is coupled to two low background photomultipliers. The detectors are placed inside a sealed copper box flushed with highly pure nitrogen; to reduce the natural environmental background the copper box is surrounded by a low background multi-ton shield. In addition, 1 m of concrete, made from the Gran Sasso rock material, almost fully surrounds this passive shield. The installation has a 3-level sealing system which prevents environmental air reaching the detectors. The whole installation is air-conditioned and several operative parameters are continuously monitored and recorded.

The DAMA/LIBRA data released so far correspond to 6 annual cycles.[2][3] Considering these data together with those previously collected by DAMA/NaI over 7 annual cycles, the total exposure (1.17 ton x yr) has been collected over 13 annual cycles. This experiment has further confirmed the presence of model-independent evidence with high statistical significance on the basis of the dark matter signature. As previously done for DAMA/NaI, careful investigations on absence of any significant systematics or side reaction in DAMA/LIBRA have been quantitatively carried out.[2][3][4]

The obtained model independent evidence is compatible with a wide set of scenarios regarding the nature of the dark matter candidate and related astrophysical, nuclear and particle physics.[5][6][7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22][23][24][25] [26][27][28][29][30][31][32][33][34][35][36] [37] [38] [39] [40][41] [42] [43] [44]

DAMA/LIBRA was upgraded in 2008 and in 2010.[45] In particular, the upgrade in 2010 allows an increase of the set-up’s sensitivity, the lowering of the energy threshold, and several other kinds of investigations.

See also[edit]


  1. ^ R. Bernabei et al. (2008). "The DAMA/LIBRA apparatus". Nuclear Instruments and Methods in Physics Research A 592 (3): 297. arXiv:0804.2738. Bibcode:2008NIMPA.592..297B. doi:10.1016/j.nima.2008.04.082. 
  2. ^ a b R. Bernabei et al. (2008). "First results from DAMA/LIBRA and the combined results with DAMA/NaI". European Physical Journal C 56: 333. arXiv:0804.2741. doi:10.1140/epjc/s10052-008-0662-y. 
  3. ^ a b R. Bernabei et al. (2010). "New results from DAMA/LIBRA". European Physical Journal C 67: 39. arXiv:1002.1028. Bibcode:2010EPJC...67...39B. doi:10.1140/epjc/s10052-010-1303-9. 
  4. ^ R. Bernabei et al. (2012). No role for muons in the DAMA annual modulation results. arXiv:1202.4179. Bibcode:2012EPJC...72.2064B. doi:10.1140/epjc/s10052-012-2064-4. 
  5. ^ P. Belli et al. (2011). "Observations of annual modulation in direct detection of relic particles and light neutralinos". Physical Review D 84: 055014. arXiv:1106.4667. Bibcode:2011PhRvD..84e5014B. doi:10.1103/PhysRevD.84.055014. 
  6. ^ N. Fornengo et al. (2011). "Discussing direct search of dark matter particles in the Minimal Supersymmetric extension of the Standard Model with light neutralinos". Physical Review D 83: 015001. arXiv:1011.4743. Bibcode:2011PhRvD..83a5001F. doi:10.1103/PhysRevD.83.015001. 
  7. ^ A. Bottino et al. (2012). "Phenomenology of light neutralinos in view of recent results at the CERN Large Hadron Collider". Physical Review D 85: 095013. arXiv:1112.5666. Bibcode:2012PhRvD..85i5013B. doi:10.1103/PhysRevD.85.095013. 
  8. ^ S. Chang et al. (2009). "Inelastic dark matter in light of DAMA/LIBRA". Physical Review D 79: 043513. arXiv:0807.2250. Bibcode:2009PhRvD..79d3513C. doi:10.1103/physrevd.79.043513. 
  9. ^ A. Bottino et al. (2010). "Relic neutralinos and the two dark matter candidate events of the CDMS II experiment". Physical Review D 81: 107302. arXiv:0912.4025. Bibcode:2010PhRvD..81j7302B. doi:10.1103/physrevd.81.107302. 
  10. ^ N. Fornengo et al. (2011). "Discussing direct search of dark matter particles in the minimal supersymmetric extension of the standard model with light neutralinos". Physical Review D 83: 015001. arXiv:1011.4743. Bibcode:2011PhRvD..83a5001F. doi:10.1103/PhysRevD.83.015001. 
  11. ^ S. Andreas et al. (2010). "Light scalar WIMP through the Higgs portal and CoGeNT". Physical Review D 82: 043522. arXiv:1003.2595. Bibcode:2010PhRvD..82d3522A. doi:10.1103/physrevd.82.043522. 
  12. ^ B. Batell et al. (2009). "Direct detection of multicomponent secluded WIMPs". Physical Review D 79: 115019. arXiv:0811.2760. Bibcode:2009PhRvD..79b5019C. doi:10.1103/PhysRevD.79.025019. 
  13. ^ R. Foot (2010). "Comprehensive analysis of the dark matter direct detection experiments in the mirror dark matter framework". Physical Review D 82: 095001. arXiv:1007.0286. Bibcode:2010PhRvD..82a5001H. doi:10.1103/PhysRevD.82.015001. 
  14. ^ D.G. Cerdeño (2007). "Phenomenological viability of neutralino dark matter in the next-to-minimal supersymmetric standard model". Journal of Cosmology and Astroparticle Physics 0706: 008. arXiv:hep-ph/0701271. Bibcode:2007JCAP...06..008C. doi:10.1088/1475-7516/2007/06/008. 
  15. ^ S. Andreas et al. (2008). "WIMP dark matter, Higgs exchange and DAMA". Journal of Cosmology and Astroparticle Physics 0810: 034. arXiv:0808.0255. Bibcode:2008JCAP...10..034A. doi:10.1088/1475-7516/2008/10/034. 
  16. ^ D.G. Cerdeño and Osamu Seto (2009). "Right-handed sneutrino dark matter in the NMSSM". Journal of Cosmology and Astroparticle Physics 0908: 032. arXiv:0903.4677. Bibcode:2009JCAP...08..032C. doi:10.1088/1475-7516/2009/08/032. 
  17. ^ Y. Mambrini (2010). "The kinetic dark-mixing in the light of CoGENT and XENON100". Journal of Cosmology and Astroparticle Physics 1009: 022. arXiv:1006.3318. Bibcode:2010JCAP...09..022M. doi:10.1088/1475-7516/2010/09/022. 
  18. ^ S. Chang et al. (2010). "CoGeNT interpretations". Journal of Cosmology and Astroparticle Physics 1008: 018. arXiv:1004.0697. Bibcode:2010JCAP...08..018C. doi:10.1088/1475-7516/2010/08/018. 
  19. ^ Y. Mambrini (2011). "The ZZ' kinetic mixing in the light of the recent direct and indirect dark matter searches". Journal of Cosmology and Astroparticle Physics 1107: 0009. arXiv:1104.4799. Bibcode:2011JCAP...07..009M. doi:10.1088/1475-7516/2011/07/009. 
  20. ^ C. Arina and N. Fornengo (2007). "Sneutrino cold dark matter, a new analysis: relic abundance and detection rates". Journal of Cosmology and Astroparticle Physics 0711: 029. arXiv:0709.4477. Bibcode:2007JHEP...11..029A. doi:10.1088/1126-6708/2007/11/029. 
  21. ^ Yeong Gyun Kim and Seodong Shin (2009). "Singlet fermionic dark matter explains DAMA signal". Journal of High Energy Physics 0905: 036. arXiv:0901.2609. Bibcode:2009JHEP...05..036K. doi:10.1088/1126-6708/2009/05/036. 
  22. ^ M. Y. Khlopov et al. (2010). "Composite Dark Matter and puzzles of Dark Matter searches". International Journal of Modern Physics D 19: 1385. arXiv:1003.1144. Bibcode:2010IJMPD..19.1385K. doi:10.1142/S0218271810017962. 
  23. ^ Yang Bai, Patrick J. Fox (2009). "Resonant Dark Matter". Journal of High Energy Physics 0911: 052. arXiv:0909.2900. Bibcode:2009JHEP...11..052B. doi:10.1088/1126-6708/2009/11/052. 
  24. ^ R. Foot (2010). "Relevance of the CDMSII events for mirror dark matter". Physical Review D 81: 087302. arXiv:1001.0096. Bibcode:2010PhRvD..81h7302F. doi:10.1103/PhysRevD.81.087302. 
  25. ^ C.E. Aalseth et al. (2011). "Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector". Physical Review Letters 106: 131301. arXiv:1002.4703. Bibcode:2011PhRvL.106m1301A. doi:10.1103/PhysRevLett.106.131301. 
  26. ^ C.E. Aalseth et al. (2011). "Search for an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector". Physical Review Letters 107: 141301. arXiv:1106.0650. Bibcode:2011PhRvL.107n1301A. doi:10.1103/PhysRevLett.107.141301. 
  27. ^ J. Alwall et al. (2010). Dark Matter-Motivated Searches for Exotic 4th Generation Quarks in Tevatron and Early LHC Data. arXiv:1002.3366. Bibcode:2010PhRvD..81k4027A. doi:10.1103/PhysRevD.81.114027. 
  28. ^ A. Liam Fitzpatrick et al. (2010). Implications of CoGeNT and DAMA for Light WIMP Dark Matter. arXiv:1003.0014. Bibcode:2010PhRvD..81k5005F. doi:10.1103/PhysRevD.81.115005. 
  29. ^ Peter W. Graham et al. (2010). "Exothermic Dark Matter". Physical Review D 82: 063512. arXiv:1004.0937. Bibcode:2010PhRvD..82f3512G. doi:10.1103/PhysRevD.82.063512. 
  30. ^ Dan Hooper et al. (2010). "A Consistent Dark Matter Interpretation For CoGeNT and DAMA/LIBRA". Physical Review D: 123509. arXiv:1007.1005. Bibcode:2010PhRvD..82l3509H. doi:10.1103/PhysRevD.82.123509. 
  31. ^ S. Chang et al. (2011). "Impure Thoughts on Inelastic Dark Matter". Physical Review Letters 106: 011301. arXiv:1007.2688. Bibcode:2011PhRvL.106a1301C. doi:10.1103/PhysRevLett.106.011301. 
  32. ^ J.F. Gunion et al. (2010). CoGeNT, DAMA, and Neutralino Dark Matter in the Next-To-Minimal Supersymmetric Standard Model. arXiv:1009.2555. Bibcode:2010arXiv1009.2555G. 
  33. ^ A.V. Belikov et al. (2011). CoGeNT, DAMA, and Light Neutralino Dark Matter. arXiv:1009.0549. Bibcode:2011PhLB..705...82B. doi:10.1016/j.physletb.2011.09.081. 
  34. ^ S. Shin (2010). Light neutralino dark matter in light Higgs scenario related with the CoGeNT and DAMA/LIBRA results. arXiv:1011.6377. Bibcode:2010arXiv1011.6377S. 
  35. ^ M. R. Buckley et al. (2011). "Particle Physics Implications for CoGeNT, DAMA, and Fermi". Physics Letters B 702: 216. arXiv:1011.1499. Bibcode:2011PhLB..702..216B. doi:10.1016/j.physletb.2011.06.090. 
  36. ^ J. L. Feng et al. (2011). "Isospin-Violating Dark Matter". Physics Letters B 703: 124. arXiv:1102.4331. Bibcode:2011PhLB..703..124F. doi:10.1016/j.physletb.2011.07.083. 
  37. ^ G. Bélanger et al. (2011). "Light Sneutrino Dark Matter at the LHC". Journal of High Energy Physics 1107: 083. arXiv:1105.4878. Bibcode:2011JHEP...07..083B. doi:10.1007/JHEP07(2011)083. 
  38. ^ E. Del Nobile et al. (2011). "Interfering Composite Asymmetric Dark Matter for DAMA and CoGeNT". Physical Review D 84: 027301. arXiv:1105.5431. Bibcode:2011PhRvD..84b7301D. doi:10.1103/PhysRevD.84.027301. 
  39. ^ M.T. Frandsen et al. (2011). "On the DAMA and CoGeNT Modulations". Physical Review D 84: 041301. arXiv:1105.3734. Bibcode:2011PhRvD..84d1301F. doi:10.1103/PhysRevD.84.041301. 
  40. ^ C. Arina et al. (2011). A Bayesian view of the current status of dark matter direct searches. arXiv:1105.5121. Bibcode:2011JCAP...09..022A. doi:10.1088/1475-7516/2011/09/022. 
  41. ^ Dan Hooper, Chris Kelso (2011). Implications of CoGeNT's New Results For Dark Matter. arXiv:1106.1066. Bibcode:2011PhRvD..84h3001H. doi:10.1103/PhysRevD.84.083001. 
  42. ^ M. S. Boucenna, S. Profumo (2011). Direct and Indirect Singlet Scalar Dark Matter Detection in the Lepton-Specific two-Higgs-doublet Model. arXiv:1106.3368. Bibcode:2011PhRvD..84e5011B. doi:10.1103/PhysRevD.84.055011. 
  43. ^ R. Foot (2011). "Mirror and hidden sector dark matter in the light of new CoGeNT data". Physics Letters B 703: 7. arXiv:1106.2688. Bibcode:2011PhLB..703....7F. doi:10.1016/j.physletb.2011.07.044. 
  44. ^ Matthew R. Buckley, Dan Hooper, Jonathan L. Rosner. A Leptophobic Z' And Dark Matter From Grand Unification. arXiv:1106.3583. Bibcode:2011PhLB..703..343B. doi:10.1016/j.physletb.2011.08.014. 
  45. ^ R. Bernabei et al. (2012). "Performances of the new high quantum efficiency PMTs in DAMA/LIBRA". European Physical Journal C 7: 03009. arXiv:1002.1028. Bibcode:2012JInst...7.3009B. doi:10.1088/1748-0221/7/03/P03009. 

External links[edit]