# Great icosidodecahedron

Jump to: navigation, search
Great icosidodecahedron
Type Uniform star polyhedron
Elements F = 32, E = 60
V = 30 (χ = 2)
Faces by sides 20{3}+12{5/2}
Wythoff symbol 2 | 3 5/2
2 | 3 5/3
2 | 3/2 5/2
2 | 3/2 5/3
Symmetry group Ih, [5,3], *532
Index references U54, C70, W94
Dual polyhedron Great rhombic triacontahedron
Vertex figure
3.5/2.3.5/2
Bowers acronym Gid

In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It is given a Schläfli symbol r{3,5/2}.

## Related polyhedra

It shares the same vertex arrangement with the icosidodecahedron, its convex hull. Unlike the great icosahedron and great dodecahedron, the great icosidodecahedron is not a stellation of the icosidodecahedron.

It also shares its edge arrangement with the great icosihemidodecahedron (having the triangular faces in common), and with the great dodecahemidodecahedron (having the pentagrammic faces in common).

 Great icosidodecahedron Great dodecahemidodecahedron Great icosihemidodecahedron Icosidodecahedron (convex hull)

This polyhedron can be considered a rectified great icosahedron:

The truncated great stellated dodecahedron is a degenerate polyhedron, with 20 triangular faces from the truncated vertices, and 12 (hidden) pentagonal faces as truncations of the original pentagram faces, the latter forming a great dodecahedron inscribed within and sharing the edges of the icosahedron.

Name Great
stellated
dodecahedron
Truncated great stellated dodecahedron Great
icosidodecahedron
Truncated
great
icosahedron
Great
icosahedron
Coxeter
diagram
Picture

### Great rhombic triacontahedron

Great rhombic triacontahedron
Type Star polyhedron
Face
Elements F = 30, E = 60
V = 32 (χ = 2)
Symmetry group Ih, [5,3], *532
Index references DU54
dual polyhedron Great icosidodecahedron

In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). It has 30 intersecting rhombic faces.

The great rhombic triacontahedron can be constructed by expanding the size of the faces of a rhombic triacontahedron by a factor of $\varphi^3 = 1+2\varphi\! = 2+\sqrt{5}$, where $\varphi\!$ is the golden ratio.